Skip to main content

Microbial Influence on Plant–Insect Interaction

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Plants and insects live in a microbial world, and the co-existence have shaped their ecology and evolution. These microbial allies play an essential role in the health, well-being, and vigor of their hosts and are often considered as “hidden players” in plant–insect interaction. The present chapter attempts to cover the contribution of microbes as drivers of plant–insect interaction where the microbial companions directly or indirectly influence the plant–insect interaction. The chapter also emphasizes the diversity of microbial communities linked with both plants and insects and their contribution toward plant–insect interaction from an ecological standpoint. It further deals with the recent updates on the use of microorganisms in pest management and the implications of microbes as a toolbox in future IPM strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR et al (2013) Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol, AEM:00068–00013

    Google Scholar 

  • Andreote FD, e Silva M d CP (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34

    Article  PubMed  Google Scholar 

  • Arbuthnott D, Levin TC, Promislow DE (2016) The impacts of Wolbachia and the microbiome on mate choice in Drosophila melanogaster. J Evol Biol 29(2):461–468

    Article  CAS  PubMed  Google Scholar 

  • Arora, A. K., & Douglas, A. E. (2017). Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J Insect Physiol, 103, 10-17. doi:https://doi.org/10.1016/j.jinsphys.2017.09.011

  • Arora AK, Forshaw A, Miller TA, Durvasula R (2015) A delivery system for field application of paratransgenic control. BMC Biotechnol 15(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly A, Weisskopf L (2017) Mining the Volatilomes of plant-associated microbiota for new biocontrol solutions. Front Microbiol 8:1638. https://doi.org/10.3389/fmicb.2017.01638

    Article  PubMed  PubMed Central  Google Scholar 

  • Batterman SA, Hedin LO, Van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502(7470):224

    Article  CAS  PubMed  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

    Article  Google Scholar 

  • Behie S, Zelisko P, Bidochka M (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577

    Article  CAS  PubMed  Google Scholar 

  • Behmer ST, Nes WD (2003) Insect sterol nutrition and physiology: a global overview. Adv Insect Physiol 31(1)

    Google Scholar 

  • Benítez E, Paredes D, Rodríguez E, Aldana D, González M, Nogales R et al (2017) Bottom-up effects on herbivore-induced plant defences: a case study based on compositional patterns of rhizosphere microbial communities. Sci Rep 7(1):6251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Yosef M, Jurkevitch E, Yuval B (2008) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol 33(2):145–154

    Article  Google Scholar 

  • Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, Schmidt A (2017) Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol 26(15):4099–4110

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115(1):138–146

    Article  Google Scholar 

  • Bernardo L, Morcia C, Carletti P, Ghizzoni R, Badeck FW, Rizza F, Terzi V (2017) Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J Proteome 169:21–32

    Article  CAS  Google Scholar 

  • Bi Y, Zhang Y, Shu C, Crickmore N, Wang Q, Du L et al (2015) Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl Microbiol Biotechnol 99(2):753–760

    Article  CAS  PubMed  Google Scholar 

  • Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects. Funct Ecol 27(3):567–573

    Article  Google Scholar 

  • Biere A, Tack AJ (2013) Evolutionary adaptation in three-way interactions between plants, microbes and arthropods. Funct Ecol 27(3):646–660

    Article  Google Scholar 

  • Bitas V, Kim H-S, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26(8):835–843

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri M, Bishop A (2008) The ecology of Bacillus thuringiensis on the phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb Ecol 56(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39(7):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Brackney DE (2017) Implications of autophagy on arbovirus infection of mosquitoes. Curr Opin Insect Sci 22:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435. https://doi.org/10.1016/j.toxicon.2006.11.022

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431. https://doi.org/10.1016/j.ibmb.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70(1):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganims

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69(5):2415–2422. https://doi.org/10.1128/AEM.69.5.2415-2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst 43:45–71

    Article  Google Scholar 

  • Cao Q, Wickham JD, Chen L, Ahmad F, Lu M, Sun J (2018) Effect of oxygen on Verbenone conversion from cis-Verbenol by gut facultative anaerobes of Dendroctonus valens. Front Microbiol 9:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55(4):1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Caragata EP, Rancès E, Hedges LM, Gofton AW, Johnson KN, O’Neill SL, McGraw EA (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9(6):e1003459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC et al (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618

    Article  CAS  PubMed  Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Nat Acad Sci:201308867

    Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107(1):113–119

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39(7):840–859

    Article  CAS  PubMed  Google Scholar 

  • De Fine Licht HH, Schiøtt M, Rogowska-Wrzesinska A, Nygaard S, Roepstorff P, Boomsma JJ (2013) Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci U S A 110(2):583–587. https://doi.org/10.1073/pnas.1212709110

    Article  PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37(1):409–433

    Article  PubMed  CAS  Google Scholar 

  • Dearing MD, Foley WJ, McLean S (2005) The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu Rev Ecol Evol Syst 36:169–189

    Article  Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang T-Y, Lin GJ-C, Chen W-Y, Lin Y-C, Zimmerli L (2012) The Arabidopsis lectin receptor kinase LecRK-V. 5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathogens 8(2):e1002513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries PJ (1987) The butterflies of Costa Rica and their natural history

    Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2000) Pheromones: exploitation of gut bacteria in the locust. Nature 403(6772):851

    Article  CAS  PubMed  Google Scholar 

  • Dillon R, Vennard C, Charnley A (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92(4):759–763

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423. https://doi.org/10.1371/journal.ppat.1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (2013) Microbial brokers of insect-plant interactions revisited. J Chem Ecol 39(7):952–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2018) Omics and the metabolic function of insect-microbial symbioses. Curr Opin Insect Sci

    Google Scholar 

  • Douglas AE, Minto LB, Wilkinson TL (2001) Quantifying nutrient production by the microbial symbionts in an aphid. J Exp Biol 204(2):349

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Shen SK (2011) The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol Exp Appl 56(3):241–248

    Article  Google Scholar 

  • Du M, Zhai Q, Deng L, Li S, Li H, Yan L et al (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. The Plant Cell 114:128272

    Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T et al (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47(2):197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao H (2017) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12(1):100–107

    Article  CAS  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37(5):699–735

    Article  CAS  PubMed  Google Scholar 

  • Engelstädter J, Hurst GD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Engl T, Kaltenpoth M (2018) Influence of microbial symbionts on insect pheromones. Nat Prod Rep 35(5):386–397

    Article  CAS  PubMed  Google Scholar 

  • Engl T, Eberl N, Gorse C, Krüger T, Schmidt TH, Plarre R et al (2018) Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol 27(8):2095–2108

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci 93(11):5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, Leger RJS (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331(6020):1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Zhang H, Ryu C-M (2013) Dynamic chemical communication between plants and Bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018. https://doi.org/10.1007/s10886-013-0317-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feichtmayer J, Deng L, Griebler C (2017) Antagonistic microbial interactions: contributions and potential applications for controlling pathogens in the aquatic systems. Front Microbiol 8:2192. https://doi.org/10.3389/fmicb.2017.02192

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson NM, Kien DTH, Clapham H, Aguas R, Trung VT, Chau TNB, McGraw EA (2015) Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Trans Med 7(279):279ra237–279ra237

    Article  CAS  Google Scholar 

  • Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc London B: Biol Sci 366(1569):1389–1400

    Article  Google Scholar 

  • Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res

    Google Scholar 

  • Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Bagnaresi P (2018) Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep 8(1):9625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill SL (2017) Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 13(12):e1006751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275. https://doi.org/10.1038/nrm.2018.2

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P (2018) Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann Appl Biol 172(2):111–125

    Article  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53(373):1377–1386

    Article  PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530

    Article  PubMed  Google Scholar 

  • Giron D, Glevarec G (2014) Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 40(7):826–835

    Article  CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J et al (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258. https://doi.org/10.1016/j.tibtech.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  • Gorter JA, Jagadeesh S, Gahr C, Boonekamp JJ, Levine JD, Billeter J-C (2016) The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Sci Rep 6:19441. https://doi.org/10.1038/srep19441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

    Article  CAS  PubMed  Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SL, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH et al (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930

    Article  CAS  PubMed  Google Scholar 

  • Haskett TL, Terpolilli JJ, Bekuma A, O’Hara GW, Sullivan JT, Wang P et al (2016) Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci 113(43):12268–12273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman M, Nault B, Smart C (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27(6):996–1002

    Article  Google Scholar 

  • Hieno A, Naznin HA, Hyakumachi M, Higuchi-Takeuchi M, Matsui M, Yamamoto YY (2016) Possible involvement of MYB44-mediated stomatal regulation in systemic resistance induced by Penicillium simplicissimum GP17-2 in Arabidopsis. Microbes Environ 31(2):154–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE et al (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332(6026):254–256

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2007) Obligate symbiont involved in pest status of host insect. Proc R Soc Lond B Biol Sci 274(1621):1979–1984

    CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50(1):371–393. https://doi.org/10.1146/annurev.ento.50.071803.130359

    Article  CAS  PubMed  Google Scholar 

  • Howe M, Keefover-Ring K, Raffa KF (2018) Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environ Entomol 47(3):638–645

    Article  CAS  PubMed  Google Scholar 

  • Hughes DP, Brodeur J, Thomas F (2012) Host manipulation by parasites. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hulcr J, Pollet M, Ubik K, Vrkoc J (2005) Exploitation of kairomones and synomones by Medetera spp.(Diptera: Dolichopodidae), predators of spruce bark beetles. Eur J Entomol 102(4):655

    Article  CAS  Google Scholar 

  • Hussain M, Frentiu FD, Moreira LA, O’Neill SL, Asgari S (2011) Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci 108(22):9250–9255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseneder C, Donaldson JR, Foil LD (2016) Genetically engineered yeast expressing a lytic peptide from Bee Venom (Melittin) kills symbiotic protozoa in the gut of Formosan subterranean termites. PLoS One 11(3):e0151675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoh H, Tago K, Hayatsu M, Kikuchi Y (2018) Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35(5):434–454

    Article  CAS  PubMed  Google Scholar 

  • Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195

    Article  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215

    Article  CAS  PubMed  Google Scholar 

  • Janson EM, Stireman JO III, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evol Int J Org Evol 62(5):997–1012

    Article  Google Scholar 

  • Johnson K (2015a) The impact of Wolbachia on virus infection in mosquitoes. Viruses 7(11):5705–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KN (2015b) Bacteria and antiviral immunity in insects. Curr Opin Insect Sci 8:97–103

    Article  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Pan X, McFadden MJ, Bevins D, Liang X, Lu P et al (2017) The maternally inheritable Wolbachia wAlbB induces refractoriness to Plasmodium berghei in Anopheles stephensi. Front Microbiol 8:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurat-Fuentes JL, Crickmore N (2017) Specificity determinants for cry insecticidal proteins: insights from their mode of action. J Invertebr Pathol 142:5–10

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015a) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20(4):206–211

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015b) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant–herbivore interactions–the role of rhizobia. Oikos 118(4):634–640

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53(1):299–328

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Meng X-Y, Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71(7):4035–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73(13):4308–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos M, Tuijl MA, de Roo J, Mulder PP, Bezemer TM (2015) Species-specific plant–soil feedback effects on above-ground plant–insect interactions. J Ecol 103(4):904–914

    Article  CAS  Google Scholar 

  • Kula AA, Hartnett DC, Wilson GW (2005) Effects of mycorrhizal symbiosis on tallgrass prairie plant–herbivore interactions. Ecol Lett 8(1):61–69

    Article  Google Scholar 

  • Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J 72(4):694–706

    Article  CAS  PubMed  Google Scholar 

  • Kwon YS, Ryu C-M, Lee S, Park HB, Han KS, Lee JH et al (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232(6):1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Thomson D, Vincent C, Arthurs SP (2008) Codling moth granulovirus: a comprehensive review. Biocontrol Sci Tech 18(7):639–663. https://doi.org/10.1080/09583150802267046

    Article  Google Scholar 

  • Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lauzon C, Sjogren R, Wright S, Prokopy R (1998) Attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to odor of bacteria: apparent confinement to specialized members of Enterobacteriaceae. Environ Entomol 27(4):853–857

    Article  Google Scholar 

  • Leonard SP, Perutka J, Powell JE, Geng P, Richhart DD, Byrom M, Moran NA (2018) Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth Biol 7(5):1279–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wu Y-J (2009) A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl Microbiol Biotechnol 82(4):749–756

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N et al (2016) Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci 113(48):13875–13880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 265–278

    Chapter  Google Scholar 

  • Marshall D, Jackson T, Unelius CR, Wee S, Young S, Townsend R, Suckling D (2016) Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland. Sci Nat 103(7-8):59

    Article  CAS  Google Scholar 

  • Martinez J, Ok S, Smith S, Snoeck K, Day JP, Jiggins FM (2015) Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathog 11(7):e1005021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    Article  CAS  PubMed  Google Scholar 

  • Miller WJ, Schneider D (2012) Endosymbiotic microbes as adaptive manipulators of arthropod behavior and natural driving sources of host speciation. Host Manipulation by Parasites, 119–137

    Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22(3):973–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnerat RG, Soares CM, Capdeville G, Jones G, Martins ÉS, Praça L et al (2009) Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microb Biotechnol 2(4):512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montillet J-L, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M et al (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11(3):e1001513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münch A, Stingl L, Jung K, Heermann R (2008) Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9(1):229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muvea AM, Meyhöfer R, Subramanian S, Poehling H-M, Ekesi S, Maniania NK (2014) Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS One 9(9):e108242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Najarro MA, Sumethasorn M, Lamoureux A, Turner TL (2015) Choosing mates based on the diet of your ancestors: replication of non-genetic assortative mating in Drosophila melanogaster. Peer J 3:e1173

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P et al (2018) Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J Pest Sci:1–15

    Google Scholar 

  • Nomura K, Melotto M, He S-Y (2005) Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Oerke E-C, Dehne H-W (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23(4):275–285

    Article  Google Scholar 

  • Okubo T, Piromyou P, Tittabutr P, Teaumroong N, Minamisawa K (2016) Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium. Microbes Environ 31(3):260–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci 109(1):E23–E31

    Article  PubMed  Google Scholar 

  • Papadopoulou GV, van Dam NM (2017) Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 32(1):13–26

    Article  CAS  Google Scholar 

  • Patot S, Allemand R, Fleury F, Varaldi J (2012) An inherited virus influences the coexistence of parasitoid species through behaviour manipulation. Ecol Lett 15(6):603–610

    Article  PubMed  Google Scholar 

  • Peterson BF, Scharf ME (2016) Lower termite associations with microbes: synergy, protection, and interplay. Front Microbiol 7:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12(12):564–569

    Article  CAS  PubMed  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71(2):255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon F, Visôtto L, Guedes R, Oliveira M (2013) Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis. J Comp Physiol B 183(6):735–747

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng S-J, Van Loon JJ, Pieterse CM, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15(9):507–514

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TC (2015) Above-belowground interactions involving plants, microbes and insects. Front Plant Sci 6:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22(9):770–778

    Article  CAS  PubMed  Google Scholar 

  • Portugal L, Muñóz-Garay C, de Castro DLM, Soberón M, Bravo A (2017) Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Insect Biochem Mol Biol 80:21–31

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398

    Article  CAS  PubMed  Google Scholar 

  • Ramsay J, Ronson C (2015) Genetic regulation of symbiosis island transfer in Mesorhizobium loti. In Biological Nitrogen Fixation

    Google Scholar 

  • Regnier FE, Law JH (1968) Insect pheromones. J Lipid Res 9(5):541–551

    Article  CAS  PubMed  Google Scholar 

  • Renwick J, Hughes P, Krull I (1976) Selective production of cis-and trans-verbenol from (−)-and (+)-alpha by a bark beetle. Science 191(4223):199–201

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1-2):305–339

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10(4):372–379

    Article  CAS  PubMed  Google Scholar 

  • Rohfritsch O (2008) Plants, gall midges, and fungi: a three-component system. Entomol Exp Appl 128(1):208–216

    Article  Google Scholar 

  • Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA (2017) Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13(1):e1006006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem H, Florez L, Gerardo N, Kaltenpoth M (2015) An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B 282(1804):20142957

    Article  PubMed  PubMed Central  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8(2484). https://doi.org/10.3389/fmicb.2017.02484

  • Segarra G, Van der Ent S, Trillas I, Pieterse C (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11(1):90–96

    Article  CAS  PubMed  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107(46):20051–20056. https://doi.org/10.1073/pnas.1009906107

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikano I, Rosa C, Tan C-W, Felton GW (2017) Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol 55:313–331

    Article  CAS  PubMed  Google Scholar 

  • Simon J-C, Boutin S, Tsuchida T, Koga R, Le Gallic J-F, Frantz A et al (2011) Facultative symbiont infections affect aphid reproduction. PLoS One 6(7):e21831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Song F, Lin Y, Chen C, Shao E, Guan X, Huang Z (2016) Insecticidal activity and histopathological effects of Vip3Aa protein from Bacillus thuringiensis on Spodoptera litura. J Microbiol Biotechnol

    Google Scholar 

  • Stein E, Molitor A, Kogel K-H, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49(11):1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Stenberg JA (2017) A conceptual framework for integrated pest management. Trends Plant Sci 22(9):759–769

    Article  CAS  PubMed  Google Scholar 

  • Stenersen J (2004) Chemical pesticides mode of action and toxicology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BP (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  CAS  PubMed  Google Scholar 

  • Sugio A, Dubreuil G, Giron D, Simon J-C (2014) Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66(2):467–478

    Article  PubMed  CAS  Google Scholar 

  • Teixeira L, Ferreira Á, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):e1000002

    Article  PubMed Central  CAS  Google Scholar 

  • Terradas G, McGraw EA (2017) Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Curr Opin Insect Sci 22:37–44

    Article  PubMed  Google Scholar 

  • Tétard-Jones C, Kertesz MA, Gallois P, Preziosi RF (2007) Genotype-by-genotype interactions modified by a third species in a plant-insect system. Am Nat 170(3):492–499

    Article  PubMed  Google Scholar 

  • Tétard-Jones C, Kertesz MA, Preziosi RF (2012) Identification of plant quantitative trait loci modulating a rhizobacteria-aphid indirect effect. PLoS One 7(7):e41524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Cammue BP, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Trillas M, Segarra G (2009) Interactions between nonpathogenic fungi and plants. Adv Bot Res 51:321–359

    Article  CAS  Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). In Current progress in biological research: Intech

    Google Scholar 

  • Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13–14):1581–1588

    PubMed  Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 243–254

    Chapter  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448

    Article  CAS  PubMed  Google Scholar 

  • Vité J, Pitman G (1968) Bark beetle aggregation: effects of feeding on the release of pheromones in Dendroctonus and Ips. Nature 218(5137):169

    Article  Google Scholar 

  • Walters D, Newton A, Lyon G (2007) Induced resistance for plant defence. Wiley Online Library

    Google Scholar 

  • Wang D, Huang Z, He H, Wei C (2018) Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch Microbiol 200(2):227–235

    Article  CAS  PubMed  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5(5):e114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741

    Article  CAS  PubMed  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Global pesticide resistance in arthropods. Cabi

    Google Scholar 

  • Whitten MM, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, Mitchell JJ et al (2016) Symbiont-mediated RNA interference in insects. Proc R Soc B 283(1825):20160042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Google Scholar 

  • Yixin HY, Seleznev A, Flores HA, Woolfit M, McGraw EA (2017) Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection. J Invertebr Pathol 143:18–25

    Article  CAS  Google Scholar 

  • Zack MD, Sopko MS, Frey ML, Wang X, Tan SY, Arruda JM et al (2017) Functional characterization of Vip3Ab1 and Vip3Bc1: two novel insecticidal proteins with differential activity against lepidopteran pests. Sci Rep 7(1):11112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143(2):866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 103(26):9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008a) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273

    Google Scholar 

  • Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008b) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    Google Scholar 

  • Zhang J, Khan SA, Heckel DG, Bock R (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35(9):871–882. https://doi.org/10.1016/j.tibtech.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  • Zheng X-Y, Spivey NW, Zeng W, Liu P-P, Fu ZQ, Klessig DF et al (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Poelman EH, Dicke M (2014) Insect herbivore-associated organisms affect plant responses to herbivory. New Phytol 204(2):315–321

    Article  Google Scholar 

Download references

Acknowledgments

AC would like to acknowledge “EVA4.0”, No. CZ.02.1.01 /0.0 /0.0 /16_ 019/0000803 financed by OP RDE” and IGA, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague for the financial support during the preparation of the book chapter. AR is supported by the EU project “EXTEMIT - K,” No. CZ.02.1.01/0.0/0.0/15_003/0000433 financed by OP RDE and IGA, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, A., Roy, A. (2021). Microbial Influence on Plant–Insect Interaction. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_14

Download citation

Publish with us

Policies and ethics