Skip to main content

Impedimetric Sensors in Environmental Analysis: An Overview

  • Chapter
  • First Online:
Environmental, Chemical and Medical Sensors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In recent years, there has been a great need for rapid, reliable, specific and sensitive techniques for environmental monitoring. Conventional analytical techniques for environmental monitoring involves high cost, skilled personnel and also often are not available for online detection. On the other hand, impedance-based electrochemical sensing has the advantages of low cost, ease of use, portability and ability to perform both screening and online monitoring. Impedance-based detection technique is very powerful tool for the analysis of interfacial properties related to biosensing and chemical sensing at the modified electrode surfaces. Impedance method is less destructive as compared to other electrochemical methods for bio and chemical analysis. Impedance sensing gives direct electrical signals and does not require a label or other pre-treatment process. Label-free detection for biological and chemical analysis has been widely reported to detect environmental toxins. This chapter describes basic concepts in sensor design and construction and also covers recent developments in the field of impedimetric sensing applied to environmental analysis. Selected examples are discussed with respect to mycotoxins (aflatoxin M1, aflatoxin B1, ochratoxin A), antibiotic and pesticide residue analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alocilja EC, Radke SM (2003) Market analysis of biosensors for food safety. Biosens Bioelectron 18(5):841–846

    Article  Google Scholar 

  • Arora K, Chand S, Malhotra B (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta 568(1):259–274

    Article  Google Scholar 

  • Arya SK, Solanki PR, Datta M, Malhotra BD (2009) Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosens Bioelectron 24(9):2810–2817

    Article  Google Scholar 

  • Baccar H, Mejri M, Prehn R, del Campo R, Baldrich E, Rosemonde M, Abdelghani A (2014) Interdigitated microelectrode arrays integrated in microfluidic cell for biosensor applications. J Nanomedicine Nanotechnol 5(6):1

    Google Scholar 

  • Bacher G, Pal S, Kanungo L, Bhand S (2012) A label-free silver wire based impedimetric immunosensor for detection of aflatoxin M1 in milk. Sens Actuators B Chem 168:223–230

    Article  Google Scholar 

  • Barbero G, Alexe-Ionescu A, Lelidis I (2005) Significance of small voltage in impedance spectroscopy measurements on electrolytic cells. J Appl Phys 98(11):113703

    Article  Google Scholar 

  • Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley. https://doi.org/10.1002/9780470753842

    Google Scholar 

  • Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13(3):173–180

    Article  Google Scholar 

  • Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81(10):3944–3949

    Article  Google Scholar 

  • Bonanni A, Del Valle M (2010) Use of nanomaterials for impedimetric DNA sensors: a review. Analytica chimic aacta 678(1):7–17

    Article  Google Scholar 

  • Brunelle S (2001) Electro immunoassay technology for foodborne pathogen detection. IVD Technol 6(2001):55

    Google Scholar 

  • Cheng F, Gamble LJ, Castner DG (2008) XPS, TOF-SIMS, NEXAFS, and SPR characterization of nitrilotriacetic acid-terminated self-assembled monolayers for controllable immobilization of proteins. Anal Chem 80(7):2564–2573

    Article  Google Scholar 

  • Cortina M, Esplandiu M, Alegret S, Del Valle M (2006) Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes. Sens Actuators B Chem 118(1):84–89

    Article  Google Scholar 

  • Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257

    Article  Google Scholar 

  • Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141(3):1980–1986

    Article  Google Scholar 

  • dos Santos MB, Sporer C, Sanvicens N, Pascual N, Errachid A, Martinez E, Marco M-P, Teixeira V, Samiter J (2009) Detection of pathogenic bacteria by electrochemical impedance spectroscopy: influence of the immobilization strategies on the sensor performance. Proc Chem 1(1):1291–1294

    Article  Google Scholar 

  • Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4(3):241–251

    Article  Google Scholar 

  • Gu W, Zhu P, Jiang D, He X, Li Y, Ji J, Zhang L, Sun Y, Sun X (2015) A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens Bioelectron 70:447–454

    Article  Google Scholar 

  • Haab BB (2003) Methods and applications of antibody microarrays in cancer research. Proteomics 3(11):2116–2122

    Article  Google Scholar 

  • Hou Y, Tlili C, Jaffrezic-Renault N, Zhang A, Martelet C, Ponsonnet L, Errachid A, Bausells J (2004) Study of mixed Langmuir-Blodgett films of immunoglobulin G/amphiphile and their application for immunosensor engineering. Biosens Bioelectron 20(6):1126–1133

    Article  Google Scholar 

  • Ionescu RE, Jaffrezic-Renault N, Bouffier L, Gondran C, Cosnier S, Pinacho DG, Marco MP, Sánchez-Baeza FJ, Healy T, Martelet C (2007) Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens Bioelectron 23(4):549–555

    Article  Google Scholar 

  • Istamboulié G, Paniel N, Zara L, Granados LR, Barthelmebs L, Noguer T (2016) Development of an impedimetricaptasensor for the determination of aflatoxin M1 in milk. Talanta 146:464–469

    Article  Google Scholar 

  • Jin Y, Mao H, Jin Q, Zhao J (2016) Real-time determination of carcinoembryonic antigen by using a contactless electrochemical immunosensor. Anal Methods 8(24):4861–4866

    Article  Google Scholar 

  • Jorcin J-B, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51(8):1473–1479

    Article  Google Scholar 

  • Kafi A, Lee D-Y, Park S-H, Kwon Y-S (2007) Development of a peroxide biosensor made of a thiolated-viologen and hemoglobin-modified gold electrode. Microchem J 85(2):308–313

    Article  Google Scholar 

  • Kanungo L, Bacher G, Bhand S (2014) Flow-based impedimetricimmunosensor for aflatoxin analysis in milk products. Appl Biochem Biotechnol 174(3):1157–1165

    Article  Google Scholar 

  • Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    Article  Google Scholar 

  • Kim J-H, Cho J-H, Cha GS, Lee C-W, Kim H-B, Paek S-H (2000) Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosens Bioelectron 14(12):907–915

    Article  Google Scholar 

  • K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17(23):2101–2113

    Article  Google Scholar 

  • Laczka O, Baldrich E, Muñoz FX, del Campo FJ (2008) Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors: The importance of transducer geometry. Anal Chem 80(19):7239–7247

    Article  Google Scholar 

  • Lai RY, Seferos DS, Heeger AJ, Bazan GC, Plaxco KW (2006) Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6-or 11-carbon self-assembled monolayers. Langmuir 22(25):10796–10800

    Article  Google Scholar 

  • Li X, Toyoda K, Ihara I (2011) Coagulation process of soymilk characterized by electrical impedance spectroscopy. J Food Eng 105(3):563–568

    Article  Google Scholar 

  • Li S, Cui H, Yuan Q, Wu J, Wadhwa A, Eda S, Jiang H (2014) AC electrokinetics-enhanced capacitive immunosensor for point-of-care serodiagnosis of infectious diseases. Biosens Bioelectron 51:437–443

    Article  Google Scholar 

  • Li Z, Ye Z, Fu Y, Xiong Y, Li Y (2016) A portable electrochemical immunosensor for rapid detection of trace aflatoxin B1 in rice. Anal Methods 8(3):548–553

    Article  Google Scholar 

  • Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555

    Article  Google Scholar 

  • Liu Y-S, Banada PP, Bhattacharya S, Bhunia AK, Bashir R (2008) Electrical characterization of DNA molecules in solution using impedance measurements. Appl Phys Lett 92(14):143902

    Article  Google Scholar 

  • Liu L, Xu D, Hu Y, Liu S, Wei H, Zheng J, Wang G, Hu X, Wang C (2015) Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples. Food Control 53:72–80

    Article  Google Scholar 

  • López Rodriguez ML, Benimeli C, Madrid RE, Giacomelli CE (2015) A simple Streptomyces spore-based impedimetric biosensor to detect lindane pesticide. Sens Actuators B Chem 207:447–454

    Article  Google Scholar 

  • Lorenz W, Schulze K (1975) Zuranwendung der transformations—impedanzspektrometrie. J Electroanal Chem Interfacial Electrochem 65(1):141–153

    Article  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170

    Article  Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy, vol 11. Wiley, New York

    Google Scholar 

  • Malvano F, Albanese D, Pilloton R, Di Matteo M (2016) A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans. Food Chem 212:688–694

    Article  Google Scholar 

  • Maruyama K, Ohkawa H, Ogawa S, Ueda A, Niwa O, Suzuki K (2006) Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal Chem 78(6):1904–1912

    Article  Google Scholar 

  • Moreno-Hagelsieb L, Foultier B, Laurent G, Pampin R, Remacle J, Raskin J-P, Flandre D (2007) Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2 O3 capacitors. Biosens Bioelectron 22(9):2199–2207

    Article  Google Scholar 

  • Nebling E, Grunwald T, Albers J, Schäfer P, Hintsche R (2004) Electrical detection of viral DNA using ultra microelectrode arrays. Anal Chem 76(3):689–696

    Article  Google Scholar 

  • Qi H, Wang C, Cheng N (2010) Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchim Acta 170(1–2):33–38

    Article  Google Scholar 

  • Radke SM, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosens Bioelectron 20(8):1662–1667

    Article  Google Scholar 

  • Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin—a detection using iridium oxide nanoparticles. Anal Chem 87(10):5167–5172

    Article  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

    Article  Google Scholar 

  • Sharma A, Istamboulie G, Hayat A, Catanante G, Bhand S, Marty JL (2017) Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens Actuators B Chem 245:507–515

    Article  Google Scholar 

  • Skládal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9(10):737–745

    Article  Google Scholar 

  • Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. TrAC Trends Anal Chem 27(7):604–611

    Article  Google Scholar 

  • Syaifudin AM, Jayasundera K, Mukhopadhyay S (2009) A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens Actuators B Chemical 137(1):67–75

    Article  Google Scholar 

  • Van Emon JM (2007) Immunoassay and other bioanalytical methods. CRC Press, Boca Raton

    Google Scholar 

  • Vig A, Radoi A, Munoz-Berbel X, Gyemant G, Marty J-L (2009) Impedimetric aflatoxin M 1 immunosensor based on colloidal gold and silver electrodeposition. Sens Actuators B Chem 138(1):214–220

    Google Scholar 

  • Wongkittisuksa B, Limsakul C, Kanatharana P, Limbut W, Asawatreratanakul P, Dawan S, Loyprasert S, Thavarungkul P (2011) Development and application of a real-time capacitive sensor. Biosens Bioelectron 26(5):2466–2472

    Article  Google Scholar 

  • Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26(2):135–150

    Article  Google Scholar 

  • Yang L, Ruan C, Li Y (2003) Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens Bioelectron 19(5):495–502

    Article  Google Scholar 

  • Yang L, Li Y, Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7. Anal Chem 76(4):1107–1113

    Article  Google Scholar 

  • Yang L, Guiseppi-Wilson A, Guiseppi-Elie A (2011) Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels. Biomed Microdevice 13(2):279–289

    Article  Google Scholar 

  • Yang T, Wang S, Jin H, Bao W, Huang S, Wang J (2013) An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sens Actuators B Chem 178:310–315

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported under NAIP project of ICAR, Govt. of India No. C4/C10125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Bhand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhand, S., Bacher, G. (2018). Impedimetric Sensors in Environmental Analysis: An Overview. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7751-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7750-0

  • Online ISBN: 978-981-10-7751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics