Skip to main content
Log in

Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microlithographically fabricated interdigitated microsensor electrodes (IMEs) were cleaned, surface activated, chemically functionalized (amine) and derivatized with an Acrloyl-PEG-NHS to receive a spun-applied monomer cocktail of UV polymerizable monomer. IMEs were 2050.5, 1550.5, 1050.5 and 0550.5 possessing lines and spaces that were 20, 15, 10, and 5 μm respectively; 5 mm line lengths and were 50 lines on each opposing bus. Bioactive hydrogels were synthesized from spun-applied and UV-crosslinked tetraethyleneglycol diacrylate (TEGDA) (crosslinker), 2-hydroxyethylmethacrylate (HEMA), polyethyleneglycol(200) monomethacrylate (PEGMA), N-[tris(hydroxymethyl)methyl]-acrylamide (HMMA) and poly(HEMA) (MW 60,000) (viscosity modifier) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) (photoinitiator) to produce a 5 μm thick p(HEMA-co-PEGMA-co-HMMA) hydrogel membrane on the IMEs. Unmodified and hydrogel coated IMEs where characterized by AC electrical impedance spectroscopy using 50 mV p-t-p over the frequency range from 10 Hz to 100 kHz in aqueous PBS 7.4 buffer and in buffer containing 50 mM [Fe(CN)6]3-/4 solution at RT. Impedimetric responses were found to scale with the device geometric parameters. Equivalent circuit modeling revealed deviations from ideality at lower device dimensions suggesting an implication of the substrate surface charge on the double layer capacitance of the electrodes. Diffusion coefficients derived from the Warburg component are in accord with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M.Y. Arica, G. Bayramoglu, Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization. Biochem. Eng. J. 20(1), 73–77 (2004a)

    Article  Google Scholar 

  • M.Y. Arica, G. Bayramoglu, Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chleated poly(HEMA-co-GMA) reactive membranes. J. Mol. Catal. B Enzym. 27(4–6), 255–265 (2004b)

    Article  Google Scholar 

  • S.H. Behrens, D.G. Grier, The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716 (2001)

    Article  Google Scholar 

  • T. Blythe, D. Bloor, Electrical properties of polymers (Cambridge University Press, London, 2005)

    Google Scholar 

  • A. Boztas, A. Guiseppi-Elie, Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Biomacromolecules 10(8), 2135–2143 (2009)

    Article  Google Scholar 

  • S. Brahim, A.M. Wilson et al., Chemical and biological sensors based on impedimetric detection using conductive polymers. Microchim. Acta 143, 123–137 (2003)

    Article  Google Scholar 

  • L. Doretti, P. Gattolin et al., Amperometric choline sensor with enzyme immobilized by gamma-irradiation in a biocompatible membrane. Anal. Lett. 27(13), 2455–2470 (1994)

    Google Scholar 

  • L. Doretti, P. Gattolin et al., Covalently immobilized choline oxidase and cholinesterases on a methacrylate copolymer for disposable membrane biosensors. Appl. Biochem. Biotechnol. 74(1), 1–12 (1998)

    Article  Google Scholar 

  • R. Ehret, W. Baumann et al., Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosens. Bioelectrons. 12(1), 29–41 (1997)

    Article  Google Scholar 

  • R. Ehret, W. Baumann et al., On-line control of cellular adhesion with impedance measurements using interdigitated electrode structure. Med. Biol. Eng. Comput. 36, 365–370 (1998)

    Article  Google Scholar 

  • Y.A. Gao, N. Li et al., A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy. Green Chem 8, 43–49 (2006)

    Article  Google Scholar 

  • K. Gawel, D. Barriet et al., Responsive hydrogels for label-free signal transduction within biosensors. Sensors 10(5), 4381–4409 (2010)

    Article  Google Scholar 

  • A. Guiseppi-Elie, Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10), 2701–2716 (2010a)

    Article  Google Scholar 

  • A. Guiseppi-Elie, An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal Bioanal Chem (2010b). doi:10.1007/s00216-010-4271-x

    Google Scholar 

  • T.C. Hang, A. Guiseppi-Elie, Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosens. Bioelectron. 19, 1537–1548 (2004)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Microfabricated electroporation chip for single cell membrane permeabilization. Sens. Actuators, A 89(3), 242–249 (2001)

    Article  Google Scholar 

  • C. Jimenez, J. Bartrol et al., Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal. Chim. Acta 351(1–3), 169–176 (1997)

    Article  Google Scholar 

  • G. Justin, A.R. Abdur Rahman et al., Bioactive hydrogel layers on microdisc electrode arrays: cyclic voltammetry experiments and simulations. Electroanalysis 21(10), 1125–1134 (2009a)

    Article  Google Scholar 

  • G. Justin, S. Finley et al., Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 103–115 (2009b)

    Article  Google Scholar 

  • S.J. Kim, S.J. Park et al., Electroactive characteristics of interpenetrating polymer network hydrogels composed of Poly(vinyl alcohol) and Poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 89, 890–894 (2003)

    Article  Google Scholar 

  • D.-N. Kim, W. Lee et al., Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures. Anal. Chim. Acta 609(1), 59–65 (2008)

    Article  Google Scholar 

  • S.J. Konopka, B. McDuffie, Diffusion coefficients of ferricyanide and ferrocyanide ions in aqueous media using twin electrode thin layer electrochemistry. Anal. Chem. 42(14), 1741–1746 (1970)

    Article  Google Scholar 

  • A. Kyritsis, P. Pissis et al., Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci., B: Polym. Phys. 33(12), 1737–1750 (1995)

    Article  Google Scholar 

  • W. Laureyn, F. Frederix, et al. Nanoscaled interdigititated gold electrodes for impedimetric immunosensing. Transducer’99. Sendai, Japan, Digest of Technical Papers, pp 1884–1185 (1999a)

  • W. Laureyn, D. Nelis, et al. Nanoscaled interdigititated titanium electrode for impedimetric biosensing. Eurosensors XIII. Hague, The Netherland. Proceeding for the 13th European Conference on Solid-State Transducers. (1999b).

  • L. Li, D.R. Walt, Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal. Chem. 67(20), 3746–3752 (1995)

    Article  Google Scholar 

  • H. Li, D.Q. Wang et al., Synthesis of a novel gelatin–carbon nanotubes hybrid hydrogel. Colloids Surf., B 33(2), 85–88 (2004)

    Article  Google Scholar 

  • C.C. Lin, A.T. Metters, Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)

    Article  Google Scholar 

  • P. Linderholm, J. Vannod et al., Bipolar resistivity profiling of 3D tissue culture. Biosens. Bioelectron. 22, 789–796 (2007)

    Article  Google Scholar 

  • Y. Luo, K.R. Kirker et al., Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control. Release 69(1), 169–184 (2000)

    Article  Google Scholar 

  • V.F. Lvovich, C.C. Liu et al., Optimization and fabrication of planar interdigitated impedance sensors for highly resistive non-aqueous industrial fluids. Sens. Actuators, B 119(2), 490–496 (2006)

    Article  Google Scholar 

  • E. Mack, T. Okano et al., Hydrogels in medicine and pharmacy. Polymers vol II (CRC Press, Boca Raton, 1988)

    Google Scholar 

  • A.V. Manishev, Y. Du et al., Evaluation of diffusion driven material property profiles using three wavelength interdigital sensor. IEEE Trans. Dielectr. Electr. Insul. 8(5), 785–798 (2001)

    Article  Google Scholar 

  • A.T. Metters, K.S. Anseth et al., Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41(11), 3993–4004 (2000)

    Article  Google Scholar 

  • W. Olthuis, W. Streekstra et al., Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators, B 24(1–3), 252–256 (1995)

    Article  Google Scholar 

  • R.M. Ottenbrite, K. Park et al. (eds.), Biomedical applications of hydrogels handbook (New York, Springer, 2010)

    Google Scholar 

  • N. Pekel, B. Salih et al., Enhancement of stability of glucose oxidase by immobilization onto metal ion-chelated poly (N-vinyl imidazole) hydrogels. J. Biomater. Sci. Polym. Ed. 16(2), 253–266 (2005)

    Article  Google Scholar 

  • M. Pellissier, D. Zigah et al., Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Langmuir 24(16), 9089–9095 (2008)

    Article  Google Scholar 

  • N.A. Peppas, J.J. Sahlin, Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(16), 1553–1561 (1996)

    Article  Google Scholar 

  • R. Pethig, Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans. Electr. Insul. EI-19(5), 453–474 (1984)

    Article  Google Scholar 

  • M.V. Pishko, A. Revzin et al., Mass transfer in amperometric biosensors based on nanocomposite thin films of redox polymers and oxidoreductases. Sensors 2(3), 79–90 (2002)

    Article  Google Scholar 

  • A.R.A. Rahman, A. Guiseppi-Elie, Design considerations in the development and application of Microdisc Electrode Arrays (MDEAs) for implantable biosensors. Biomed. Microdevices 11, 701–710 (2009)

    Article  Google Scholar 

  • A.R.A. Rahman, D.T. Price et al., Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sens. Actuators, B 127, 89–96 (2007)

    Article  Google Scholar 

  • A.R.A. Rahman, G. Justin et al., Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2009)

    Article  Google Scholar 

  • B. Roffel, J.J. van de Graaf, The diffusion coefficient of ferricyanide ions in aqueous potassium chloride solutions with and without polyethylene oxide addition. J. Chem. Eng. Data 22(3), 301–302 (1977)

    Article  Google Scholar 

  • A.Y. Rubina, S.V. Pan’kov et al., Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal. Biochem. 325(1), 92–106 (2004)

    Article  Google Scholar 

  • B. Schulz, A. Riedel et al., Influence of polymerization parameters and entrapment in poly(hydroxyethyl methacrylate) on activity and stability of GOD. J. Mol. Catal. B Enzym. 7(1–4), 85–91 (1999)

    Article  Google Scholar 

  • S. Sengupta, D.A. Battigelli et al., A micro-scale multi-frequency reactance measurement technique to detect bacterial growth at low bio-particle concentrations. Lab Chip 6, 1–11 (2006)

    Article  Google Scholar 

  • N.F. Sheppard Jr., R.C. Tucker et al., Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal. Chem. 65(9), 1199–1202 (1993)

    Article  Google Scholar 

  • N.F. Sheppard Jr., M.J. Lesho et al., Microfabricated conductimetric pH sensor. Sens. Actuators, B 28(2), 95–102 (1995)

    Article  Google Scholar 

  • N.F. Sheppard Jr., D.J. Mears et al., Model of a conductimetric urea biosensor. Biosens. Bioelectron. 11(10), 967–979 (1996)

    Article  Google Scholar 

  • C. Soto, C. Patterson et al., Immobilization and hybridization of DNA in a sugar polyacrylate hydrogel. Biotechnol. Bioeng. 92(7), 934–942 (2005)

    Article  Google Scholar 

  • M.M. Sung, G.J. Kluth et al., Formation of alkylsiloxane self-assembled monolayers on Si3N4. J. Vac. Sci. Technol., A 17(2), 540–544 (1999)

    Article  Google Scholar 

  • R. Trigo, M. Blanco, et al., L-Ascorbic acid release from poly(2-hydroxyethyl methacrylate) hydrogels. Polym. Bull. 31, 577–584 (1993)

    Google Scholar 

  • Y. Wang, G. Tan et al., Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 255(2), 604–606 (2008)

    Article  Google Scholar 

  • L. Yang, A. Guiseppi-Elie, Impedimetric biosensors for nano and microfluidics, in Encyclopedia of microfluidics and nanofluidics, ed. by D. Li, vol. 2 (Springer-Verlag GmbH, Berlin Heidelberg, 2008), pp. 811–823

    Chapter  Google Scholar 

  • L. Yang, Y. Li, Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J. Microbiol. Methods 64, 9–16 (2006)

    Article  Google Scholar 

  • X. Yang, G. Zhang, The voltammetric performance of interdigitated electrodes with different electron-transfer rate constants. Sens. Actuators, B 126(2), 624–631 (2007)

    Article  Google Scholar 

  • L. Yang, Y. Li et al., Interdigited microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19, 1139–1147 (2004)

    Article  Google Scholar 

  • B. Yu, C. Wang et al., Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens. Bioelectron. 23(8), 1278–1284 (2008)

    Article  Google Scholar 

  • M.C. Zaretsky, L. Mouayad et al., Continuum properties from interdigital electrode dielectrometry. IEEE Trans. Elect. Insul. 23, 897–917 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

L. Yang acknowledges support from NC BIOIMPACT initiative and the Gold Leaf foundation. A Guiseppi-Wilson acknowledges the support of ABTECH Scientific, Inc. and A. Guiseppi-Elie acknowledges support from the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Guiseppi-Wilson, A. & Guiseppi-Elie, A. Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels. Biomed Microdevices 13, 279–289 (2011). https://doi.org/10.1007/s10544-010-9492-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9492-4

Keywords

Navigation