Skip to main content

Alginate Microcapsules for Drug Delivery

  • Chapter
  • First Online:
Alginates and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 11))

Abstract

Currently, conventional drug delivery systems do not provide adequate therapeutic profiles for the management of multiple diseases. In this regard, cell encapsulation technology emerges as a suitable alternative. Undoubtedly, one of the most employed biomaterials for this purpose is alginate, since it presents multiple advantages that favor the development of this technology. Importantly, the thorough study concerning the purification and modification of the polymer has led to biocompatible alginates, a vital advancement for the correct function of the system. Furthermore, the possibility to entrap different cell types together with the plausibility of engineering cells to produce disparate therapeutic biomolecules has given rise to numerous applications. That is the case of relevant and prevalent diseases nowadays such as diabetes, cancer, or neurological diseases. Intensive research in the field has resulted in promising preclinical studies in animal models that have instigated the conduction of several clinical trials. Nonetheless, addressing some current challenges regarding aspects such as biosafety or biofunctionalization seems to be a prerequisite before the clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2014) Global status report on noncommunicable diseases. World Health Organization, Geneva. doi: ISBN 978 92 4 156485 4

    Google Scholar 

  2. Shakir R (2015) Neurodegenerative noncommunicable diseases (Neurology NCDs). Where are we now? J Neurol Sci 356(1–2):1–2. https://doi.org/10.1016/j.jns.2015.07.005

    Article  Google Scholar 

  3. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742. https://doi.org/10.1007/s10529-010-0221-0

    Article  Google Scholar 

  4. Chang TM (2005) Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov 4(3):221–235. https://doi.org/10.1038/nrd1659

    Article  Google Scholar 

  5. Mazzitelli S, Capretto L, Quinci F et al (2013) Preparation of cell-encapsulation devices in confined microenvironment. Adv Drug Deliv Rev 65(11–12):1533–1555. https://doi.org/10.1016/j.addr.2013.07.021

    Article  Google Scholar 

  6. de Vos P, Lazarjani HA, Poncelet D et al (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67-68:15–34. https://doi.org/10.1016/j.addr.2013.11.005

    Article  Google Scholar 

  7. Bisceglie V (1934) Über die antineoplastische Immunität. Z Krebsforsch 40(1):122–140

    Article  Google Scholar 

  8. Chang TM (1964) Semipermeable microcapsules. Science 146(3643):524–525

    Article  Google Scholar 

  9. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    Article  Google Scholar 

  10. Grant GT, Morris ER, Rees DA et al (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32(1):195–198. https://doi.org/10.1016/0014-5793(73)80770-7

    Article  Google Scholar 

  11. Marriott AS, Bergstrom E, Hunt AJ et al (2014) A natural template approach to mesoporous carbon spheres for use as green chromatographic stationary phases. RSC Adv 4(1):222–228. https://doi.org/10.1039/C3RA44428G

    Article  Google Scholar 

  12. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  Google Scholar 

  13. Donati I, Holtan S, Morch YA et al (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6(2):1031–1040. https://doi.org/10.1021/bm049306e

    Article  Google Scholar 

  14. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays (Basel) 4(2):133–161. https://doi.org/10.3390/microarrays4020133

    Article  Google Scholar 

  15. Haug A, Smidsrod O (1965) The effect of divalent metals on the properties of alginate solutions. Acta Chem Scand 19:341–351

    Article  Google Scholar 

  16. Leong J, Lam W, Ho K et al (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60. https://doi.org/10.1016/j.partic.2015.09.004

    Article  Google Scholar 

  17. Morch YA, Donati I, Strand BL et al (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480. https://doi.org/10.1021/bm060010d

    Article  Google Scholar 

  18. Jeong SI, Jeon O, Krebs MD et al (2012) Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur Cell Mater 24:331–343

    Article  Google Scholar 

  19. Zhao S, Cao M, Li H et al (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(epsilon-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345(3):425–431. https://doi.org/10.1016/j.carres.2009.11.014

    Article  Google Scholar 

  20. Kingsley DM, Dias AD, Corr DT (2016) Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads. Biotechnol Bioeng 113(10):2264–2274. https://doi.org/10.1002/bit.25987

    Article  Google Scholar 

  21. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817. https://doi.org/10.1098/rsif.2014.0817

    Article  Google Scholar 

  22. Orive G, Hernandez RM, Gascon AR et al (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107. https://doi.org/10.1038/nm0103-104

    Article  Google Scholar 

  23. Qian D, Bai B, Yan G et al (2016) Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair. Artif Cells Nanomed Biotechnol 44(1):270–276. https://doi.org/10.3109/21691401.2014.942458

    Article  Google Scholar 

  24. Hu J, Li H, Chi G et al (2015) IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis. Int J Clin Exp Med 8(1):706–713

    Google Scholar 

  25. Ibarra V, Appel AA, Anastasio MA et al (2016) This paper is a winner in the undergraduate category for the SFB awards: evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res 104(7):1581–1590. https://doi.org/10.1002/jbm.a.35769

    Article  Google Scholar 

  26. Pareta R, McQuilling JP, Sittadjody S et al (2014) Long-term function of islets encapsulated in a re-designed alginate microcapsule construct in omentum pouches of immune-competent diabetic rats. Pancreas 43(4):605–613. https://doi.org/10.1097/MPA.0000000000000107

    Article  Google Scholar 

  27. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100. https://doi.org/10.1016/j.smim.2007.11.004

    Article  Google Scholar 

  28. Rokstad AM, Brekke OL, Steinkjer B et al (2013) The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials 34(3):621–630. https://doi.org/10.1016/j.biomaterials.2012.10.012

    Article  Google Scholar 

  29. Orning P, Hoem KS, Coron AE et al (2016) Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation. J Control Release 229:58–69. https://doi.org/10.1016/j.jconrel.2016.03.021

    Article  Google Scholar 

  30. Rokstad AM, Brekke OL, Steinkjer B et al (2011) Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater 7(6):2566–2578. https://doi.org/10.1016/j.actbio.2011.03.011

    Article  Google Scholar 

  31. Tam SK, Dusseault J, Polizu S et al (2005) Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 26(34):6950–6961. https://doi.org/10.1016/j.biomaterials.2005.05.007

    Article  Google Scholar 

  32. Tam SK, Bilodeau S, Dusseault J et al (2011) Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater 7(4):1683–1692. https://doi.org/10.1016/j.actbio.2010.12.006

    Article  Google Scholar 

  33. Juste S, Lessard M, Henley N et al (2005) Effect of poly-L-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vitro method. J Biomed Mater Res A 72(4):389–398. https://doi.org/10.1002/jbm.a.30254

    Article  Google Scholar 

  34. Santos E, Pedraz JL, Hernandez RM et al (2013) Therapeutic cell encapsulation: ten steps towards clinical translation. J Control Release 170(1):1–14. https://doi.org/10.1016/j.jconrel.2013.04.015

    Article  Google Scholar 

  35. Demont A, Cole H, Marison IW (2016) An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures. J Microencapsul 33(1):80–88. https://doi.org/10.3109/02652048.2015.1134686

    Article  Google Scholar 

  36. Zhang W, Zhao S, Rao W et al (2013) A novel core-shell microcapsule for encapsulation and 3D culture of embryonic stem cells. J Mater Chem B Mater Biol Med 2013(7):1002–1009. https://doi.org/10.1039/C2TB00058J

    Article  Google Scholar 

  37. Zheng G, Liu X, Wang X et al (2014) Improving stability and biocompatibility of alginate/chitosan microcapsule by fabricating bi-functional membrane. Macromol Biosci 14(5):655–666. https://doi.org/10.1002/mabi.201300474

    Article  Google Scholar 

  38. Yang HK, Ham DS, Park HS et al (2016) Long-term efficacy and biocompatibility of encapsulated islet transplantation with chitosan-coated alginate capsules in mice and canine models of diabetes. Transplantation 100(2):334–343. https://doi.org/10.1097/TP.0000000000000927

    Article  Google Scholar 

  39. Hillberg AL, Oudshoorn M, Lam JB et al (2015) Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate. J Biomed Mater Res B Appl Biomater 103(3):503–518. https://doi.org/10.1002/jbm.b.33185

    Article  Google Scholar 

  40. Orive G, Hernandez RM, Gascon AR et al (2003) Development and optimisation of alginate-PMCG-alginate microcapsules for cell immobilisation. Int J Pharm 259(1–2):57–68. https://doi.org/10.1016/S0378-5173(03)00201-1

    Article  Google Scholar 

  41. Spasojevic M, Paredes-Juarez GA, Vorenkamp J et al (2014) Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers. PLoS One 9(10):e109837. https://doi.org/10.1371/journal.pone.0109837

    Article  Google Scholar 

  42. Spasojevic M, Bhujbal S, Paredes G et al (2014) Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane. J Biomed Mater Res A 102(6):1887–1896. https://doi.org/10.1002/jbm.a.34863

    Article  Google Scholar 

  43. Orive G, Santos E, Poncelet D et al (2015) Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci 36(8):537–546. https://doi.org/10.1016/j.tips.2015.05.003

    Article  Google Scholar 

  44. Wang T, Adcock J, Kuhtreiber W et al (2008) Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85(3):331–337. https://doi.org/10.1097/TP.0b013e3181629c25

    Article  Google Scholar 

  45. Sun Y, Ma X, Zhou D et al (1996) Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98(6):1417–1422. https://doi.org/10.1172/JCI118929

    Article  Google Scholar 

  46. Luca G, Arato I, Mancuso F et al (2016) Xenograft of microencapsulated Sertoli cells restores glucose homeostasis in db/db mice with spontaneous diabetes mellitus. Xenotransplantation 23:429. https://doi.org/10.1111/xen.12274

    Article  Google Scholar 

  47. Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 67-68:35–73. https://doi.org/10.1016/j.addr.2013.07.018

    Article  Google Scholar 

  48. Qi M (2013) Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv Med 2014:429710. https://doi.org/10.1155/2014/429710

    Google Scholar 

  49. Chen T, Yuan J, Duncanson S et al (2015) Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am J Transplant 15(3):618–627. https://doi.org/10.1111/ajt.13049

    Article  Google Scholar 

  50. Su J, Hu BH, Lowe WL Jr et al (2010) Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31(2):308–314. https://doi.org/10.1016/j.biomaterials.2009.09.045

    Article  Google Scholar 

  51. Orive G, Gascon AR, Hernandez RM et al (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24(5):207–210. https://doi.org/10.1016/S0165-6147(03)00073-7

    Article  Google Scholar 

  52. Olabisi RM (2015) Cell microencapsulation with synthetic polymers. J Biomed Mater Res A 103(2):846–859. https://doi.org/10.1002/jbm.a.35205

    Article  Google Scholar 

  53. Paredes Juarez GA, Spasojevic M, Faas MM et al (2014) Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2:26. https://doi.org/10.3389/fbioe.2014.00026

    Article  Google Scholar 

  54. Marchioli G, van Gurp L, van Krieken PP et al (2015) Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 7(2):025009. https://doi.org/10.1088/1758-5090/7/2/025009

    Article  Google Scholar 

  55. McHugh DJ (2003) A guide to the seaweed industry. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  56. Hay ID, Ur Rehman Z, Moradali MF et al (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650. https://doi.org/10.1111/1751-7915.12076

    Google Scholar 

  57. Hernandez RM, Orive G, Murua A et al (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7–8):711–730. https://doi.org/10.1016/j.addr.2010.02.004

    Article  Google Scholar 

  58. Paredes-Juarez GA, de Haan BJ, Faas MM et al (2013) The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules. J Control Release 172(3):983–992. https://doi.org/10.1016/j.jconrel.2013.09.009

    Article  Google Scholar 

  59. Dufrane D, Gianello P (2012) Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J Gastroenterol 18(47):6885–6893. https://doi.org/10.3748/wjg.v18.i47.6885

    Article  Google Scholar 

  60. Montanucci P, Terenzi S, Santi C et al (2015) Insights in behavior of variably formulated alginate-based microcapsules for cell transplantation. Biomed Res Int 2015:965804. https://doi.org/10.1155/2015/965804

    Article  Google Scholar 

  61. Sondermeijer HP, Witkowski P, Woodland D et al (2016) Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds. J Biomater Appl 31(4):510–520. https://doi.org/10.1177/0885328216645952

    Article  Google Scholar 

  62. Calafiore R, Basta G (2014) Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev 67-68:84–92. https://doi.org/10.1016/j.addr.2013.09.020

    Article  Google Scholar 

  63. Kim AR, Hwang JH, Kim HM et al (2013) Reduction of inflammatory reaction in the use of purified alginate microcapsules. J Biomater Sci Polym Ed 24(9):1084–1098. https://doi.org/10.1080/09205063.2012.735100

    Article  Google Scholar 

  64. Basta G, Calafiore R (2011) Immunoisolation of pancreatic islet grafts with no recipient’s immunosuppression: actual and future perspectives. Curr Diab Rep 11(5):384–391. https://doi.org/10.1007/s11892-011-0219-6

    Article  Google Scholar 

  65. Dolgin E (2014) Encapsulate this. Nat Med 20(1):9–11. https://doi.org/10.1038/nm0114-9

    Article  Google Scholar 

  66. Vegas AJ, Veiseh O, Gurtler M et al (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–311. https://doi.org/10.1038/nm.4030

    Article  Google Scholar 

  67. Paredes-Juarez GA, de Haan BJ, Faas MM et al (2014) A technology platform to test the efficacy of purification of alginate. Materials 7(3):2087–2103. https://doi.org/10.3390/ma7032087

    Article  Google Scholar 

  68. Langlois G, Dusseault J, Bilodeau S et al (2009) Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomater 5(9):3433–3440. https://doi.org/10.1016/j.actbio.2009.05.029

    Article  Google Scholar 

  69. Bhujbal SV, de Vos P, Niclou SP (2014) Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 67-68:142–153. https://doi.org/10.1016/j.addr.2014.01.010

    Article  Google Scholar 

  70. Swioklo S, Ding P, Pacek AW et al (2017) Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochem 59:289. https://doi.org/10.1016/j.procbio.2016.06.005

    Article  Google Scholar 

  71. Richardson T, Kumta PN, Banerjee I (2014) Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng Part A 20(23–24):3198–3211. https://doi.org/10.1089/ten.TEA.2013.0659

    Article  Google Scholar 

  72. Erro E, Bundy J, Massie I et al (2013) Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system. Biores Open Access 2(1):1–11. https://doi.org/10.1089/biores.2012.0286

    Article  Google Scholar 

  73. Formo K, Cho CH, Vallier L et al (2015) Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J Biomed Mater Res A 103(12):3717–3726. https://doi.org/10.1002/jbm.a.35507

    Article  Google Scholar 

  74. de Vos P, Bucko M, Gemeiner P et al (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30(13):2559–2570. https://doi.org/10.1016/j.biomaterials.2009.01.014

    Article  Google Scholar 

  75. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626. https://doi.org/10.1586/erd.11.27

    Article  Google Scholar 

  76. Gauvin R, Parenteau-Bareil R, Dokmeci MR et al (2012) Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):235–246. https://doi.org/10.1002/wnan.171

    Article  Google Scholar 

  77. Borg DJ, Bonifacio E (2011) The use of biomaterials in islet transplantation. Curr Diab Rep 11(5):434–444. https://doi.org/10.1007/s11892-011-0210-2

    Article  Google Scholar 

  78. Barkai U, Rotem A, de Vos P (2016) Survival of encapsulated islets: More than a membrane story. World J Transplant 6(1):69–90. https://doi.org/10.5500/wjt.v6.i1.69

    Article  Google Scholar 

  79. Jacobs-Tulleneers-Thevissen D, Chintinne M, Ling Z et al (2013) Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56(7):1605–1614. https://doi.org/10.1007/s00125-013-2906-0

    Article  Google Scholar 

  80. Kerby A, Jones ES, Jones PM et al (2013) Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy 15(2):192–200. https://doi.org/10.1016/j.jcyt.2012.10.018

    Article  Google Scholar 

  81. Figliuzzi M, Bonandrini B, Silvani S et al (2014) Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J Stem Cells 6(2):163–172. https://doi.org/10.4252/wjsc.v6.i2.163

    Article  Google Scholar 

  82. Iacovacci V, Ricotti L, Menciassi A et al (2016) The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochem Pharmacol 100:12–27. https://doi.org/10.1016/j.bcp.2015.08.107

    Article  Google Scholar 

  83. Montanucci P, Pennoni I, Pescara T et al (2013) Treatment of diabetes mellitus with microencapsulated fetal human liver (FH-B-TPN) engineered cells. Biomaterials 34(16):4002–4012. https://doi.org/10.1016/j.biomaterials.2013.02.026

    Article  Google Scholar 

  84. Tomei AA, Villa C, Ricordi C (2015) Development of an encapsulated stem cell-based therapy for diabetes. Expert Opin Biol Ther 15(9):1321–1336. https://doi.org/10.1517/14712598.2015.1055242

    Article  Google Scholar 

  85. Ngoc PK, Phuc PV, Nhung TH et al (2011) Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Hum Cell 24(2):86–95. https://doi.org/10.1007/s13577-011-0018-z

    Article  Google Scholar 

  86. Richardson T, Barner S, Candiello J et al (2016) Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 35:153–165. https://doi.org/10.1016/j.actbio.2016.02.025

    Article  Google Scholar 

  87. Murua A, Orive G, Hernandez RM et al (2011) Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 31(2):284–309. https://doi.org/10.1002/med.20184

    Article  Google Scholar 

  88. Orive G, De Castro M, Kong HJ et al (2009) Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 135(3):203–210. https://doi.org/10.1016/j.jconrel.2009.01.005

    Article  Google Scholar 

  89. Orive G, Santos E, Pedraz JL et al (2014) Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 67-68:3–14. https://doi.org/10.1016/j.addr.2013.07.009

    Article  Google Scholar 

  90. Acarregui A, Pedraz JL, Blanco FJ et al (2013) Hydrogel-based scaffolds for enclosing encapsulated therapeutic cells. Biomacromolecules 14(2):322–330. https://doi.org/10.1021/bm301690a

    Article  Google Scholar 

  91. Hashemi M, Kalalinia F (2015) Application of encapsulation technology in stem cell therapy. Life Sci 143:139–146. https://doi.org/10.1016/j.lfs.2015.11.007

    Article  Google Scholar 

  92. Klinge PM, Harmening K, Miller MC et al (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett 497(1):6–10. https://doi.org/10.1016/j.neulet.2011.03.092

    Article  Google Scholar 

  93. Knippenberg S, Thau N, Dengler R et al (2012) Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 7(6):e36857. https://doi.org/10.1371/journal.pone.0036857

    Article  Google Scholar 

  94. Wright EJ, Farrell KA, Malik N et al (2012) Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med 1(10):759–769. https://doi.org/10.5966/sctm.2012-0064

    Article  Google Scholar 

  95. Heile AMB, Wallrapp C, Klinge PM et al (2009) Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 463(3):176–181. https://doi.org/10.1016/j.neulet.2009.07.071

    Article  Google Scholar 

  96. Skinner SJM, Geaney MS, Lin H et al (2009) Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma. J Neural Eng 6:065001. https://doi.org/10.1088/1741-2560/6/6/065001

    Article  Google Scholar 

  97. Huang SL, Wang J, He XJ et al (2014) Secretion of BDNF and GDNF from free and encapsulated choroid plexus epithelial cells. Neurosci Lett 566:42–45. https://doi.org/10.1016/j.neulet.2014.02.017

    Article  Google Scholar 

  98. Aliaghaei A, Digaleh H, Khodagholi F et al (2015) Encapsulated choroid plexus epithelial cells actively protect against intrahippocampal abeta-induced long-term memory dysfunction; upregulation of effective neurogenesis with the abrogated apoptosis and neuroinflammation. J Mol Neurosci 56(3):708–721. https://doi.org/10.1007/s12031-015-0492-y

    Article  Google Scholar 

  99. Pettingill LN, Wise AK, Geaney MS et al (2011) Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 6(4):e18733. https://doi.org/10.1371/journal.pone.0018733

    Article  Google Scholar 

  100. Gillespie LN, Zanin MP, Shepherd RK (2015) Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig. J Control Release 198:26–34. https://doi.org/10.1016/j.jconrel.2014.11.026

    Article  Google Scholar 

  101. Lindvall O, Wahlberg LU (2008) Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Exp Neurol 209(1):82–88. https://doi.org/10.1016/j.expneurol.2007.08.019

    Article  Google Scholar 

  102. Grandoso L, Ponce S, Manuel I et al (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343(1–2):69–78. https://doi.org/10.1016/j.ijpharm.2007.05.027

    Article  Google Scholar 

  103. Date I, Ohmoto T, Imaoka T et al (1996) Cografting with polymer-encapsulated human nerve growth factor-secreting cells and chromaffin cell survival and behavioral recovery in hemiparkinsonian rats. J Neurosurg 84(6):1006–1012. https://doi.org/10.3171/jns.1996.84.6.1006

    Article  Google Scholar 

  104. Date I, Ohmoto T, Imaoka T et al (1996) Chromaffin cell survival from both young and old donors is enhanced by co-grafts of polymer-encapsulated human NGF-secreting cells. Neuroreport 7(11):1813–1818

    Article  Google Scholar 

  105. Emerich DF, Orive G, Thanos C et al (2014) Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev 67-68:131–141. https://doi.org/10.1016/j.addr.2013.07.008

    Article  Google Scholar 

  106. Spuch C, Antequera D, Portero A et al (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31(21):5608–5618. https://doi.org/10.1016/j.biomaterials.2010.03.042

    Article  Google Scholar 

  107. Antequera D, Portero A, Bolos M et al (2012) Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AbetaPP/Ps1 mice. J Alzheimers Dis 29(1):187–200. https://doi.org/10.3233/JAD-2011-111646

    Google Scholar 

  108. Shen Y, Qiao H, Fan Q et al (2015) Potentiated osteoinductivity via cotransfection with BMP-2 and VEGF genes in microencapsulated C2C12 Cells. Biomed Res Int 2015:435253. https://doi.org/10.1155/2015/435253

    Google Scholar 

  109. Han YF, Han YQ, Pan YG et al (2010) Transplantation of microencapsulated cells expressing VEGF improves angiogenesis in implanted xenogeneic acellular dermis on wound. Transplant Proc 42(5):1935–1943. https://doi.org/10.1016/j.transproceed.2009.12.070

    Article  Google Scholar 

  110. Chen W, Yang D, Wang P et al (2011) Microencapsulated myoblasts transduced by the vascular endothelial growth factor (VEGF) gene for the ischemic skin flap. Aesthet Plast Surg 35(3):326–332. https://doi.org/10.1007/s00266-010-9610-y

    Article  Google Scholar 

  111. Kim C, Chung S, Yuchun L et al (2012) In vitro angiogenesis assay for the study of cell-encapsulation therapy. Lab Chip 12(16):2942–2950. https://doi.org/10.1039/c2lc40182g

    Article  Google Scholar 

  112. Selimoglu SM, Elibol M (2010) Alginate as an immobilization material for MAb production via encapsulated hybridoma cells. Crit Rev Biotechnol 30(2):145–159. https://doi.org/10.3109/07388550903451652

    Article  Google Scholar 

  113. Dubrot J, Portero A, Orive G et al (2010) Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 59(11):1621–1631. https://doi.org/10.1007/s00262-010-0888-z

    Article  Google Scholar 

  114. Saenz del Burgo L, Compte M, Aceves M et al (2015) Microencapsulation of therapeutic bispecific antibodies producing cells: immunotherapeutic organoids for cancer management. J Drug Target 23(2):170–179. https://doi.org/10.3109/1061186X.2014.971327

    Article  Google Scholar 

  115. Read TA, Sorensen DR, Mahesparan R et al (2001) Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 19(1):29–34. https://doi.org/10.1038/83471

    Article  Google Scholar 

  116. Kleinschmidt K, Klinge PM, Stopa E et al (2011) Alginate encapsulated human mesenchymal stem cells suppress syngeneic glioma growth in the immunocompetent rat. J Microencapsul 28(7):621–627. https://doi.org/10.3109/02652048.2011.599441

    Article  Google Scholar 

  117. Goren A, Dahan N, Goren E et al (2010) Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 24(1):22–31. https://doi.org/10.1096/fj.09-131888

    Article  Google Scholar 

  118. Shah K (2013) Encapsulated stem cells for cancer therapy. Biomatter 3(1.):Epub 2013 Jan 1). https://doi.org/10.4161/biom.24278

  119. Soon-Shiong P, Heintz RE, Merideth N et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343(8903):950–951

    Article  Google Scholar 

  120. Calafiore R, Basta G, Luca G et al (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29(1):137–138. https://doi.org/10.2337/diacare.29.01.06.dc05-1270

    Article  Google Scholar 

  121. Basta G, Montanucci P, Luca G et al (2011) Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34(11):2406–2409. https://doi.org/10.2337/dc11-0731

    Article  Google Scholar 

  122. Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32(10):1887–1889. https://doi.org/10.2337/dc09-0744

    Article  Google Scholar 

  123. A phase I/II study of the safety and efficacy of Sernova’s Cell PouchTM for therapeutic islet transplantation. Available via https://clinicaltrials.gov/ct2/show/NCT01652911. Accessed Nov 2016

  124. Elliott RB, Escobar L, Tan PL et al (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14(2):157–161. https://doi.org/10.1111/j.1399-3089.2007.00384.x

    Article  Google Scholar 

  125. Living cell technologies: DIABECELL®. Available via http://www.lctglobal.com/products/diabecell/development-to-date. Accessed Nov 2016

  126. Open-label investigation of the safety and effectiveness of DIABECEL® in patients with type I diabetes mellitus. Available via https://clinicaltrials.gov/ct2/show/NCT00940173. Accessed Nov 2016

  127. Open-label investigation of the safety and effectiveness of DIABECELL® in patients with type 1 diabetes mellitus. Available via https://clinicaltrials.gov/ct2/show/NCT01739829. Accessed Nov 2016

  128. Open-label investigation if the safety and efficacy of DIABECELL® in patients with type 1 diabetes mellitus. Available via https://clinicaltrials.gov/ct2/show/NCT01736228. Accessed Nov 2016

  129. GLP-1 CellBeads® for the treatment of stroke patients with space-occupying intrecerebral hemorrhage. Available via https://clinicaltrials.gov/ct2/show/NCT01298830. Accessed Nov 2016

  130. Heile A, Brinker T (2011) Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. Dialogues Clin Neurosci 13(3):279–286

    Google Scholar 

  131. Luo XM, Lin H, Wang W et al (2013) Recovery of neurological functions in non-human primate model of Parkinson’s disease by transplantation of encapsulated neonatal porcine choroid plexus cells. J Parkinsons Dis 3(3):275–291. https://doi.org/10.3233/JPD-130214

    Google Scholar 

  132. Open-label investigation of the safety and clinical effects of NTCELL® in patients with Parkinson’s disease. Available via https://clinicaltrials.gov/ct2/show/NCT01734733. Accessed Nov 2016

  133. Investigation of the safety and efficacy of NTCELL® [Immunoprotected (Alginate-Encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson’s disease. Available via https://clinicaltrials.gov/ct2/show/NCT02683629. Accessed Nov 2016

  134. Living cell technoogies: NTCELL®. Available via http://www.lctglobal.com/products/ntcell/development-to-date. Accessed Nov 2016

  135. Santos E, Orive G, Hernandez RM et al (2011) Cell-biomaterial interaction: strategies to mimic the extracellular matrix. In: Pramatarova L (ed) On biomimetics. InTech, Rijeka

    Google Scholar 

  136. Cruz-Acuna R, Garcia AJ (2016) Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol 57–58:324. https://doi.org/10.1016/j.matbio.2016.06.002

    Google Scholar 

  137. Dalheim MO, Vanacker J, Najmi MA et al (2016) Efficient functionalization of alginate biomaterials. Biomaterials 80:146–156. https://doi.org/10.1016/j.biomaterials.2015.11.043

    Article  Google Scholar 

  138. Marturano JE, Schiele NR, Schiller ZA et al (2016) Embryonically inspired scaffolds regulate tenogenically differentiating cells. J Biomech 49(14):3281–3288. https://doi.org/10.1016/j.jbiomech.2016.08.011

    Article  Google Scholar 

  139. Garate A, Ciriza J, Casado JG et al (2015) Assessment of the behavior of mesenchymal stem cells immobilized in biomimetic alginate microcapsules. Mol Pharm 12(11):3953–3962. https://doi.org/10.1021/acs.molpharmaceut.5b00419

    Article  Google Scholar 

  140. Garate A, Santos E, Pedraz JL et al (2015) Evaluation of different RGD ligand densities in the development of cell-based drug delivery systems. J Drug Target 23(9):806–812. https://doi.org/10.3109/1061186X.2015.1020428

    Article  Google Scholar 

  141. Santos E, Garate A, Pedraz JL et al (2014) The synergistic effects of the RGD density and the microenvironment on the behavior of encapsulated cells: in vitro and in vivo direct comparative study. J Biomed Mater Res A 102(11):3965–3972. https://doi.org/10.1002/jbm.a.35073

    Article  Google Scholar 

  142. Llacua A, de Haan BJ, Smink SA et al (2016) Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J Biomed Mater Res A 104(7):1788–1796. https://doi.org/10.1002/jbm.a.35706

    Article  Google Scholar 

  143. Mazzitelli S, Luca G, Mancuso F et al (2011) Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater 7(3):1050–1062. https://doi.org/10.1016/j.actbio.2010.10.005

    Article  Google Scholar 

  144. Lou R, Xie H, Zheng H et al (2016) Alginate-based microcapsules with galactosylated chitosan internal for primary hepatocyte applications. Int J Biol Macromol 93(Pt A):1133–1140. https://doi.org/10.1016/j.ijbiomac.2016.09.078

    Article  Google Scholar 

  145. Jeon O, Powell C, Solorio LD et al (2011) Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 154(3):258–266. https://doi.org/10.1016/j.jconrel.2011.06.027

    Article  Google Scholar 

  146. Dang TT, Thai AV, Cohen J et al (2013) Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34(23):5792–5801. https://doi.org/10.1016/j.biomaterials.2013.04.016

    Article  Google Scholar 

  147. Murua A, Herran E, Orive G et al (2011) Design of a composite drug delivery system to prolong functionality of cell-based scaffolds. Int J Pharm 407(1–2):142–150. https://doi.org/10.1016/j.ijpharm.2010.11.022

    Article  Google Scholar 

  148. Acarregui A, Herran E, Igartua M et al (2014) Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta Biomater 10(10):4206–4216. https://doi.org/10.1016/j.actbio.2014.06.038

    Article  Google Scholar 

  149. Azadi SA, Vasheghani-Farahani E, Hashemi-Najafbabadi S et al (2016) Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects. Prog Biomater 5:101–109. https://doi.org/10.1007/s40204-016-0049-3

    Article  Google Scholar 

  150. Jo EH, Hwang YH, Lee DY (2015) Encapsulation of pancreatic islet with HMGB1 fragment for attenuating inflammation. Biomater Res. 19:21-015-0042-2. eCollection 2015. https://doi.org/10.1186/s40824-015-0042-2

  151. Arlov O, Skjak-Braek G, Rokstad AM (2016) Sulfated alginate microspheres associate with factor H and dampen the inflammatory cytokine response. Acta Biomater 42:180–188. https://doi.org/10.1016/j.actbio.2016.06.015

    Article  Google Scholar 

  152. Zanotti L, Sarukhan A, Dander E et al (2013) Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia 27(2):500–503. https://doi.org/10.1038/leu.2012.202

    Article  Google Scholar 

  153. Alunno A, Montanucci P, Bistoni O et al (2015) In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjogren’s syndrome. Rheumatology (Oxford) 54(1):163–168. https://doi.org/10.1093/rheumatology/keu292

    Article  Google Scholar 

  154. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91(1):19–26. https://doi.org/10.1038/icb.2012.56

    Article  Google Scholar 

  155. Vaithilingam V, Evans MD, Rowe A et al (2016) Coencapsulation of target effector cells with mesenchymal stem cells reduces pericapsular fibrosis and improves graft survival in a xenotransplanted animal model. Cell Transplant 25(7):1299–1317. https://doi.org/10.3727/096368915X688975

    Article  Google Scholar 

  156. Stucky EC, Schloss RS, Yarmush ML et al (2015) Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 17(10):1353–1364. https://doi.org/10.1016/j.jcyt.2015.05.002

    Article  Google Scholar 

  157. Luca G, Mancuso F, Calvitti M et al (2015) Long-term stability, functional competence, and safety of microencapsulated specific pathogen-free neonatal porcine Sertoli cells: a potential product for cell transplant therapy. Xenotransplantation 22(4):273–283. https://doi.org/10.1111/xen.12175

    Article  Google Scholar 

  158. Luca G, Bellezza I, Arato I et al (2016) Terapeutic potential of microencapsulated sertoli cells in Huntington disease. CNS Neurosci Ther 22(8):686–690. https://doi.org/10.1111/cns.12569

    Article  Google Scholar 

  159. Arifin DR, Manek S, Call E et al (2012) Microcapsules with intrinsic barium radiopacity for immunoprotection and X-ray/CT imaging of pancreatic islet cells. Biomaterials 33(18):4681–4689. https://doi.org/10.1016/j.biomaterials.2012.03.008

    Article  Google Scholar 

  160. Qie F, Astolfo A, Wickramaratna M et al (2015) Self-assembled gold coating enhances X-ray imaging of alginate microcapsules. Nanoscale 7(6):2480–2488. https://doi.org/10.1039/c4nr06692h

    Article  Google Scholar 

  161. Yang F, Zhang X, Maiseyeu A et al (2012) The prolonged survival of fibroblasts with forced lipid catabolism in visceral fat following encapsulation in alginate-poly-L-lysine. Biomaterials 33(22):5638–5649. https://doi.org/10.1016/j.biomaterials.2012.04.035

    Article  Google Scholar 

  162. Barnett BP, Arepally A, Stuber M et al (2011) Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat Protoc 6(8):1142–1151. https://doi.org/10.1038/nprot.2011.352

    Article  Google Scholar 

  163. Catena R, Santos E, Orive G et al (2010) Improvement of the monitoring and biosafety of encapsulated cells using the SFGNESTGL triple reporter system. J Control Release 146(1):93–98. https://doi.org/10.1016/j.jconrel.2010.05.018

    Article  Google Scholar 

  164. Allen AB, Gazit Z, Su S et al (2014) In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs. Tissue Eng Part C Methods 20(10):806–816. https://doi.org/10.1089/ten.TEC.2013.0587

    Article  Google Scholar 

  165. Santos E, Larzabal L, Calvo A et al (2013) Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials 34(4):1442–1451. https://doi.org/10.1016/j.biomaterials.2012.10.076

    Article  Google Scholar 

  166. Chan KW, Liu G, van Zijl PC et al (2014) Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 35(27):7811–7818. https://doi.org/10.1016/j.biomaterials.2014.05.057

    Article  Google Scholar 

  167. Krishnan R, Arora RP, Alexander M et al (2014) Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 35(3):891–898. https://doi.org/10.1016/j.biomaterials.2013.10.012

    Article  Google Scholar 

  168. Chang HK, Kim PH, Cho HM et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24(9):1644–1654. https://doi.org/10.1038/mt.2016.120

    Article  Google Scholar 

  169. Wang P, Song Y, Weir MD et al (2016) A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dent Mater 32(2):252–263. https://doi.org/10.1016/j.dental.2015.11.019

    Article  Google Scholar 

  170. Zhao L, Weir MD, HH X (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31(25):6502–6510. https://doi.org/10.1016/j.biomaterials.2010.05.017

    Article  Google Scholar 

  171. Barkai U, Weir GC, Colton CK et al (2013) Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 22(8):1463–1476. https://doi.org/10.3727/096368912X657341

    Article  Google Scholar 

  172. Neufeld T, Ludwig B, Barkai U et al (2013) The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 8(8):e70150. https://doi.org/10.1371/journal.pone.0070150

    Article  Google Scholar 

  173. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651. https://doi.org/10.1038/nmat4290

    Article  Google Scholar 

Download references

Acknowledgments

A. Gonzalez-Pujana thanks the Basque Government (Department of Education, Universities and Research) for the PhD fellowship. This project was partially supported by the Basque Government (Consolidated Groups, IT-907-16) and the University of the Basque Country UPV/EHU (UFI11/32).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edorta Santos-Vizcaino or Rosa Maria Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Pujana, A., Orive, G., Pedraz, J.L., Santos-Vizcaino, E., Hernandez, R.M. (2018). Alginate Microcapsules for Drug Delivery. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_3

Download citation

Publish with us

Policies and ethics