Skip to main content

Advertisement

Log in

Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunostimulatory monoclonal antibodies are immunoglobulins directed toward surface proteins of immune system cells that augment the immune response against cancer in a novel therapeutic fashion. Exogenous administration of the recombinant humanized immunoglobulins is being tested in clinical trials with agents of this kind directed at a variety of immune-controlling molecular targets. In this study, the encapsulation of antibody-producing hybridoma cells was tested in comparison with the systemic administration of monoclonal antibodies. Hybridomas producing anti-CD137 and anti-OX40 mAb were encapsulated in alginate to generate microcapsules containing viable cells that secrete antibody. Immobilized cells in vitro were able to release the rat immunoglobulin produced by the hybridomas into the supernatant. Microcapsules were implanted by injection into the subcutaneous tissue of mice and thereby provided a platform for viable secreting cells, which lasted for more than 1 week. The pharmacokinetic profile of the rat monoclonal antibodies following microcapsule implantation was similar to that attained following an intraperitoneal administration of the purified antibodies. The rat–mouse hybridoma cells did not engraft as tumors in immunocompetent mice, while they lethally xenografted in immunodeficient mice, if not microencapsulated. The antitumor therapeutic activity of the strategy was studied on established CT26 colon carcinomas resulting in complete tumor eradication in an elevated fraction of cases and strong tumor-specific CTL responses with either anti-CD137 or anti-OX40 producing hybridomas, thus offering proof of the concept. This form of administration permitted combinations of more than one immunostimulatory monoclonal antibody to exploit the synergistic effects such as those known to be displayed by anti-CD137 and anti-OX40 mAb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

mAb:

Monoclonal antibody

DC:

Dendritic cell

TNF:

Tumor necrosis factor

NK:

Natural killer

APA:

Alginate-poly-l-lysine-alginate

References

  1. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7:95–106

    Article  CAS  PubMed  Google Scholar 

  2. Murillo O, Arina A, Tirapu I et al (2003) Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clin Cancer Res 9:5454–5464

    CAS  PubMed  Google Scholar 

  3. Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339

    Article  CAS  PubMed  Google Scholar 

  4. Weber J (2009) Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 58:823–830

    Article  CAS  PubMed  Google Scholar 

  5. Fong L, Small EJ (2008) Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 26:5275–5283

    Article  CAS  PubMed  Google Scholar 

  6. Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883

    Article  CAS  PubMed  Google Scholar 

  7. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  CAS  PubMed  Google Scholar 

  8. Uno T, Takeda K, Kojima Y et al (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12:693–698

    Article  CAS  PubMed  Google Scholar 

  9. Kocak E, Lute K, Chang X et al (2006) Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res 66:7276–7284

    Article  CAS  PubMed  Google Scholar 

  10. Gray JC, French RR, James S, Al-Shamkhani A, Johnson PW, Glennie MJ (2008) Optimising anti-tumour CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur J Immunol 38:2499–2511

    Article  CAS  PubMed  Google Scholar 

  11. Pardoll D, Allison J (2004) Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 10:887–892

    Article  CAS  PubMed  Google Scholar 

  12. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    Article  CAS  PubMed  Google Scholar 

  13. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  CAS  PubMed  Google Scholar 

  14. Weinberg AD, Rivera MM, Prell R et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169

    CAS  PubMed  Google Scholar 

  15. Melero I, Shuford WW, Newby SA et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685

    Article  CAS  PubMed  Google Scholar 

  16. Munks MW, Mourich DV, Mittler RS, Weinberg AD, Hill AB (2004) 4-1BB and OX40 stimulation enhance CD8 and CD4 T-cell responses to a DNA prime, poxvirus boost vaccine. Immunology 112:559–566

    Article  CAS  PubMed  Google Scholar 

  17. Cuadros C, Dominguez AL, Lollini PL et al (2005) Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 116:934–943

    Article  CAS  PubMed  Google Scholar 

  18. Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  CAS  PubMed  Google Scholar 

  19. Calafiore R, Basta G, Luca G et al (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29:137–138

    Article  PubMed  Google Scholar 

  20. Lohr M, Hoffmeyer A, Kroger J et al (2001) Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 357:1591–1592

    Article  CAS  PubMed  Google Scholar 

  21. Orive G, Hernandez RM, Gascon AR et al (2003) Cell encapsulation: promise and progress. Nat Med 9:104–107

    Article  CAS  PubMed  Google Scholar 

  22. Wilson JT, Chaikof EL (2008) Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60:124–145

    Article  CAS  PubMed  Google Scholar 

  23. Wilcox RA, Flies DB, Zhu G et al (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109:651–659

    CAS  PubMed  Google Scholar 

  24. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851

    Article  CAS  PubMed  Google Scholar 

  25. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  PubMed  Google Scholar 

  26. Ponce S, Orive G, Hernandez RM et al (2006) In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules. J Control Release 116:28–34

    Article  CAS  PubMed  Google Scholar 

  27. Huang AY, Gulden PH, Woods AS et al (1996) The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA 93:9730–9735

    Article  CAS  PubMed  Google Scholar 

  28. Casares N, Lasarte JJ, de Cerio AL et al (2001) Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur J Immunol 31:1780–1789

    Article  CAS  PubMed  Google Scholar 

  29. Murillo O, Dubrot J, Palazon A et al (2009) In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur J Immunol 39:2424–2436

    Google Scholar 

  30. Mittler RS, Bailey TS, Klussman K, Trailsmith MD, Hoffmann MK (1999) Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med 190:1535–1540

    Article  CAS  PubMed  Google Scholar 

  31. Seo SK, Choi JH, Kim YH et al (2004) 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med 10:1088–1094

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Blink SE, Chen JH, Fu YX (2005) Regulation of follicular dendritic cell networks by activated T cells: the role of CD137 signaling. J Immunol 175:884–890

    CAS  PubMed  Google Scholar 

  33. Mazzolini G, Murillo O, Atorrasagasti C et al (2007) Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 13:5822–5831

    CAS  PubMed  Google Scholar 

  34. Melero I, Murillo O, Dubrot J, Hervas-Stubbs S, Perez-Gracia JL (2008) Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci 29:383–390

    Article  CAS  PubMed  Google Scholar 

  35. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Google Scholar 

  36. Miller RE, Jones J, Le T et al (2002) 4-1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J Immunol 169:1792–1800

    CAS  PubMed  Google Scholar 

  37. Murillo O, Arina A, Hervas-Stubbs S et al (2008) Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res 14:6895–6906

    Article  CAS  PubMed  Google Scholar 

  38. Weinberg AD (2002) OX40: targeted immunotherapy–implications for tempering autoimmunity and enhancing vaccines. Trends Immunol 23:102–109

    Article  CAS  PubMed  Google Scholar 

  39. Gough MJ, Ruby CE, Redmond WL, Dhungel B, Brown A, Weinberg AD (2008) OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res 68:5206–5215

    Article  CAS  PubMed  Google Scholar 

  40. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  CAS  PubMed  Google Scholar 

  41. Grandoso L, Ponce S, Manuel I et al (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343:69–78

    Article  CAS  PubMed  Google Scholar 

  42. Murua A, de Castro M, Orive G, Hernandez RM, Pedraz JL (2007) In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate-poly-l-lysine-alginate microcapsules. Biomacromolecules 8:3302–3307

    Article  CAS  PubMed  Google Scholar 

  43. McLenachan S, Sarsero JP, Ioannou PA (2007) Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs. Genomics 89:708–720

    Article  CAS  PubMed  Google Scholar 

  44. Orive G, Tam SK, Pedraz JL, Halle JP (2006) Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy. Biomaterials 27:3691–3700

    Article  CAS  PubMed  Google Scholar 

  45. Orive G, De Castro M, Kong HJ et al (2009) Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 135:203–210

    Article  CAS  PubMed  Google Scholar 

  46. French RR, Taraban VY, Crowther GR et al (2007) Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood 109:4810–4815

    Article  CAS  PubMed  Google Scholar 

  47. Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP (2004) B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21:401–413

    Article  CAS  PubMed  Google Scholar 

  48. de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617

    Article  PubMed  Google Scholar 

  49. Orive G, De Castro M, Ponce S et al (2005) Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 12:283–289

    Article  CAS  PubMed  Google Scholar 

  50. Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48

    Article  CAS  PubMed  Google Scholar 

  51. Tobias CA, Han SS, Shumsky JS et al (2005) Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 22:138–156

    Article  PubMed  Google Scholar 

  52. Teng H, Zhang Y, Wang W, Ma X, Fei J (2007) Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells. Acta Biochim Biophys Sin (Shanghai) 39:278–284

    Article  CAS  Google Scholar 

  53. Sangro B, Melero I, Qian C, Prieto J (2005) Gene therapy of cancer based on interleukin 12. Curr Gene Ther 5:573–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Lieping Chen for the kind gift of the 2A hybridoma and Mario Colombo for OX86 cells. Elena Ciordia and Eneko Elizalde are acknowledged for their excellent animal facility management. We received financial support from MEC/MICINN (SAF2005-03131 and SAF2008-03294), Departamento de Educación del Gobierno de Navarra, Departamento de Salud del Gobierno de Navarra (Beca Ortiz de Landázuri), Redes temáticas de investigación cooperativa RETIC (RD06/0020/0065), Fondo de investigación sanitaria (FIS PI060932), European Commission FP7 (ENCITE) and SUDOE-IMMUNONET (FEDER) which supports JD, Fundacion Mutua Madrileña and “UTE for project FIMA”. M S-H received a Ramon y Cajal contract from Ministerio de Ciencia y tecnología and A P a scholarship from FIS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Luis Pedraz or Ignacio Melero.

Additional information

I. Melero and J. L. Pedraz equally share credit for senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrot, J., Portero, A., Orive, G. et al. Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 59, 1621–1631 (2010). https://doi.org/10.1007/s00262-010-0888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0888-z

Keywords

Navigation