Skip to main content

The Matrix Metalloproteinase and Tissue Inhibitors of Metalloproteinase Balance in Physiological and Pathological Remodeling of Skeletal Muscles

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Skeletal muscle is a highly plastic tissue that undergoes physiological or pathological remodeling in response to various stimuli such as exercise, immobilization, injury, disease, or aging. This remodeling process implies subtle or more profound changes to skeletal muscle structure and composition that involves extracellular matrix (ECM) degradation by matrix metalloproteinases. The balance between matrix metalloproteinases (MMPs) and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), regulates tissue homeostasis. Upregulation of MMPs and/or TIMPs correlates with vascular growth and enlargement in endurance-exercised individuals or with inflammation and regeneration of muscle fibers in injured or diseased muscles. They, further, contribute to the development of fibrosis by regulating cytokine/chemokine production and release/activation of growth factors. Those induce phenotypic transformation and favor the production of ECM components. It is, therefore, important to define the exact pattern of MMP/TIMP expression and regulation in normal and diseased muscles in order to identify potential targets for therapeutic approaches or biomarkers for specific disease entities and therapeutic follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:1–14

    Article  CAS  Google Scholar 

  2. Allamand V, Merlini L, Bushby K, Consortium for Collagen VI RM (2010) 166th ENMC international workshop on collagen type VI-related myopathies, 22-24 May 2009, Naarden, The Netherlands. Neuromuscul Disord 20:346–354

    Article  Google Scholar 

  3. Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM, Recan D et al (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin a/C gene. Ann Neurol 48:170–180

    Article  CAS  PubMed  Google Scholar 

  4. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  CAS  PubMed  Google Scholar 

  5. Demir E, Sabatelli P, Allamand V, Ferreiro A, Moghadaszadeh B, Makrelouf M et al (2002) Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet 70:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helbling-Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J et al (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11:216–218

    Article  CAS  PubMed  Google Scholar 

  7. Muntoni F, Bonne G, Goldfarb LG, Mercuri E, Piercy RJ, Burke M et al (2006) Disease severity in dominant Emery Dreifuss is increased by mutations in both emerin and desmin proteins. Brain 129:1260–1268

    Article  CAS  PubMed  Google Scholar 

  8. Fortelny N, Cox JH, Kappelhoff R, Starr AE, Lange PF, Pavlidis P et al (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12:e1001869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ricard-Blum S, Vallet SD (2016) Proteases decode the extracellular matrix cryptome. Biochimie 122:300–313

    Article  CAS  PubMed  Google Scholar 

  10. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  CAS  PubMed  Google Scholar 

  11. Bani C, Lagrota-Candido J, Pinheiro DF, Leite PE, Salimena MC, Henriques-Pons A et al (2008) Pattern of metalloprotease activity and myofiber regeneration in skeletal muscles of mdx mice. Muscle Nerve 37:583–592

    Article  CAS  PubMed  Google Scholar 

  12. Barnes BR, Szelenyi ER, Warren GL, Urso ML (2009) Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. Am J Physiol Cell Physiol 297:C1501–C1508

    Article  CAS  PubMed  Google Scholar 

  13. Bellayr I, Mu X, Li Y (2009) Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 1:1095–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214

    Article  CAS  PubMed  Google Scholar 

  15. Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543

    Article  CAS  PubMed  Google Scholar 

  16. Carmeli E, Moas M, Lennon S, Powers SK (2005) High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. Exp Physiol 90:613–619

    Article  CAS  PubMed  Google Scholar 

  17. Carmeli E, Kodesh E, Nemcovsky C (2009) Tetracycline therapy for muscle atrophy due to immobilization. J Musculoskelet Neuronal Interact 9:81–88

    CAS  PubMed  Google Scholar 

  18. Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L (2013) Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat Inflamm 2013:928315

    Google Scholar 

  19. Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S et al (2007) Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 8:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kherif S, Dehaupas M, Lafuma C, Fardeau M, Alameddine HS (1998) Matrix metalloproteinases MMP-2 and MMP-9 in denervated muscle and injured nerve. Neuropathol Appl Neurobiol 24:309–319

    Article  CAS  PubMed  Google Scholar 

  21. Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M et al (1999) Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 205:158–170

    Article  CAS  PubMed  Google Scholar 

  22. Ohnishi J, Ohnishi E, Shibuya H, Takahashi T (2005) Functions for proteinases in the ovulatory process. Biochim Biophys Acta 1751:95–109

    Article  CAS  PubMed  Google Scholar 

  23. Paiva KBS, Granjeiro JM (2014) Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys 561:74–87

    Article  CAS  PubMed  Google Scholar 

  24. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  CAS  PubMed  Google Scholar 

  25. Gulati AK, Zalewski AA, Reddi AH (1983) An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration in the adult newt. Dev Biol 96:355–365

    Article  CAS  PubMed  Google Scholar 

  26. Gulati AK, Reddi AH, Zalewski AA (1983) Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol 97:957–962

    Article  CAS  PubMed  Google Scholar 

  27. Porter BE, Weis J, Sanes JR (1995) A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14:549–559

    Article  CAS  PubMed  Google Scholar 

  28. Sanes JR, Marshall LM, McMahan UJ (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol 78:176–198

    Article  CAS  PubMed  Google Scholar 

  29. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Couch CB, Strittmatter WJ (1983) Rat myoblast fusion requires metalloendoprotease activity. Cell 32:257–265

    Article  CAS  PubMed  Google Scholar 

  31. Couch CB, Strittmatter WJ (1984) Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts. J Biol Chem 259:5396–5399

    CAS  PubMed  Google Scholar 

  32. Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652–656

    Article  CAS  PubMed  Google Scholar 

  33. Morgan J, Alameddine HS (2012). Stem cell based therapy for muscular dystrophies: cell types and environmental factors influencing their efficacy, muscular dystrophy, Dr. Madhuri Hegde (ed), InTech, doi:10.5772/30831. Available from: http://www.intechopen.com/books/muscular-dystrophy/stem-cell-based-therapy-for-muscular-dystrophies-cell-types-and-environmental-factors-influencing-th

  34. Morgan J, Rouche A, Bausero P, Houssaïni A, Gross J, Fiszman MY et al (2010) MMP-9 overexpression improves myogenic cell migration and engraftment. Muscle Nerve 42:584–595

    Article  CAS  PubMed  Google Scholar 

  35. Pan H, Vojnits K, Liu TT, Meng F, Yang L, Wang Y et al (2015) MMP1 gene expression enhances myoblast migration and engraftment following implanting into mdx/SCID mice. Cell Adhes Migr 9:283–292

    Article  CAS  Google Scholar 

  36. Hindi SM, Shin J, Ogura Y, Li H, Kumar A (2013) Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 8:e72121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar A, Bhatnagar S, Kumar A (2010) Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am J Pathol 177:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A (2009) Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 18:2584–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shiba N, Miyazaki D, Yoshizawa T, Fukushima K, Shiba Y, Inaba Y et al (2015) Differential roles of MMP-9 in early and late stages of dystrophic muscles in a mouse model of Duchenne muscular dystrophy. Biochim Biophys Acta 1852:2170–2182

    Article  CAS  PubMed  Google Scholar 

  40. Balcerzak D, Querengesser L, Dixon WT, Baracos VE (2001) Coordinated expression of matrix-degrading proteinases and their activators and inhibitors in bovine skeletal muscle. J Anim Sci 79:94–107

    Article  CAS  PubMed  Google Scholar 

  41. Caron NJ, Asselin I, Morel G, Tremblay JP (1999) Increased myogenic potential and fusion of matrilysin-expressing myoblasts transplanted in mice. Cell Transplant 8:465–476

    Article  CAS  PubMed  Google Scholar 

  42. El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287

    Article  PubMed  CAS  Google Scholar 

  43. Guérin CW, Holland PC (1995) Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn 202:91–99

    Article  PubMed  Google Scholar 

  44. Lewis MP, Tippett HL, Sinanan AC, Morgan MJ, Hunt NP (2000) Gelatinase-B (matrix metalloproteinase-9; MMP-9) secretion is involved in the migratory phase of human and murine muscle cell cultures. J Muscle Res Cell Motil 21:223–233

    Article  CAS  PubMed  Google Scholar 

  45. Lluri G, Jaworski DM (2005) Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 32:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hattori A (2008) Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 29:37–44

    Article  CAS  PubMed  Google Scholar 

  47. Ohtake Y, Tojo H, Seiki M (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119:3822–3832

    Article  CAS  PubMed  Google Scholar 

  48. Torrente Y, El Fahime E, Caron NJ, Del Bo R, Belicchi M, Pisati F et al (2003) Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant 12:91–100

    Article  Google Scholar 

  49. Dehne N, Kerkweg U, Flohe SB, Brune B, Fandrey J (2011) Activation of hypoxia-inducible factor 1 in skeletal muscle cells after exposure to damaged muscle cell debris. Shock 35:632–638

    Article  CAS  PubMed  Google Scholar 

  50. Diomedi-Camassei F, Boldrini R, Ravà L, Donfrancesco A, Boglino C, Messina E et al (2004) Different pattern of matrix metalloproteinases expression in alveolar versus embryonal rhabdomyosarcoma. J Ped Surg 39:1673–1679

    Article  Google Scholar 

  51. Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A (2014) In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 44:27–34

    Article  CAS  PubMed  Google Scholar 

  52. Allen DL, Teitelbaum DH, Kurachi K (2003) Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol - Cell Physiol 284:C805–C815

    Article  CAS  PubMed  Google Scholar 

  53. Yeghiazaryan M, Zybura-Broda K, Cabaj A, Wlodarczyk J, Slawinska U, Rylski M et al (2012) Fine-structural distribution of MMP-2 and MMP-9 activities in the rat skeletal muscle upon training: a study by high-resolution in situ zymography. Histochem Cell Biol 138:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hadler-Olsen E, Solli AI, Hafstad A, Winberg JO, Uhlin-Hansen L (2015) Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol 230:160–169

    Article  CAS  PubMed  Google Scholar 

  55. Chin JR, Werb Z (1997) Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development 124:1519–1530

    CAS  PubMed  Google Scholar 

  56. Wang W, Pan H, Murray K, Jefferson BS, Li Y (2009) Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol 174:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ito H, Hallauer PL, Hastings KE, Tremblay JP (1998) Prior culture with concanavalin A increases intramuscular migration of transplanted myoblast. Muscle Nerve 21:291–297

    Article  CAS  PubMed  Google Scholar 

  58. Jaworski DM, Soloway P, Caterina J, Falls WA (2006) Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits. J Neurobiol 66:82–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lluri G, Langlois GD, Soloway PD, Jaworski DM (2008) Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and beta1 integrin expression in vitro. Exp Cell Res 314:11–24

    Article  CAS  PubMed  Google Scholar 

  60. Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    Article  CAS  PubMed  Google Scholar 

  61. Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S (1997) Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272:22389–22392

    Article  CAS  PubMed  Google Scholar 

  62. Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, Abe E et al (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16:1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA et al (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28:261–265

    Article  CAS  PubMed  Google Scholar 

  64. Plaghki L (1985) Regeneration and myogenesis of striated muscle. J Physiol Paris 80:51–110

    CAS  PubMed  Google Scholar 

  65. Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A et al (2004) Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23:5041–5048

    Article  CAS  PubMed  Google Scholar 

  66. Liu H, Chen SE, Jin B, Carson JA, Niu A, Durham W et al (2010) TIMP3: a physiological regulator of adult myogenesis. J Cell Sci 123:2914–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Echizenya M, Kondo S, Takahashi R, Oh J, Kawashima S, Kitayama H et al (2005) The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 24:5850–5857

    Article  CAS  PubMed  Google Scholar 

  68. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F et al (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80

    Article  CAS  PubMed  Google Scholar 

  69. Devine RD, Bicer S, Reiser PJ, Velten M, Wold LE (2015) Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia. Am J Physiol Heart Circ Physiol 309:H685–H691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Q, Joshi SK, Lovett DH, Zhang B, Bodine S, Kim H et al (2014) Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles Ligaments Tendons J 4:362–370

    PubMed  PubMed Central  Google Scholar 

  71. Faulkner JA, Brooks SV, Opiteck JA (1993) Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther 73:911–921

    Article  CAS  PubMed  Google Scholar 

  72. Rullman E, Norrbom J, Stromberg A, Wagsater D, Rundqvist H, Haas T et al (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812

    Article  CAS  PubMed  Google Scholar 

  73. Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H et al (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD et al (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:H1540–H1547

    CAS  PubMed  Google Scholar 

  75. Brown MD, Hudlicka O (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6:1–14

    Article  CAS  PubMed  Google Scholar 

  76. Rullman E, Rundqvist H, Wagsater D, Fischer H, Eriksson P, Sundberg CJ et al (2007) A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102:2346–2351

    Article  CAS  PubMed  Google Scholar 

  77. Alameddine HS (2004) La plasticité du tissu musculaire. In: Didier JP (ed) La plasticité du tissu musculaire. Springer, Paris, France, pp 55–105

    Google Scholar 

  78. Reihmane D, Tretjakovs P, Kaupe J, Sars M, Valante R, Jurka A (2012) Systemic pro-inflammatory molecule response to acute submaximal exercise in moderately and highly trained athletes. Environmental and Experimental Biology 10:107–112

    Google Scholar 

  79. Rooney SI, Tobias JW, Bhatt PR, Kuntz AF, Soslowsky LJ (2015) Genetic response of rat supraspinatus tendon and muscle to exercise. PLoS One 10:e0139880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Klein G, Schmal O, Aicher WK (2015) Matrix metalloproteinases in stem cell mobilization. Matrix Biol 44–46:175–183

    Article  PubMed  CAS  Google Scholar 

  81. Raffeto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359

    Article  CAS  Google Scholar 

  82. van Hinsbergh VWM, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    Article  PubMed  CAS  Google Scholar 

  83. Han JK, Kim HL, Jeon KH, Choi YE, Lee HS, Kwon YW et al (2013) Peroxisome proliferator-activated receptor-delta activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks. Eur Heart J 34:1755–1765

    Article  CAS  PubMed  Google Scholar 

  84. Dennis RA, Zhu H, Kortebein PM, Bush HM, Harvey JF, Sullivan DH et al (2009) Muscle expression of genes associated with inflammation, growth, and remodeling is strongly correlated in older adults with resistance training outcomes. Physiol Genomics 38:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fiotti N, Deiuri E, Altamura N, De Colle P, Moretti ME, Toigo G, et al. (2009) Body composition and muscular strength changes after moderate activity: association with matrix metalloproteinase polymorphisms. Arch Gerontol Geriatr 49(Suppl 1): 83–94

    Google Scholar 

  86. Peviani SM, Russo TL, Durigan JL, Vieira BS, Pinheiro CM, Galassi MS et al (2009) Stretching and electrical stimulation regulate the metalloproteinase-2 in rat denervated skeletal muscle. Neurol Res 32:891–896

    Article  PubMed  CAS  Google Scholar 

  87. Russo TL, Peviani SM, Durigan JL, Salvini TF (2008) Electrical stimulation increases matrix metalloproteinase-2 gene expression but does not change its activity in denervated rat muscle. Muscle Nerve 37:593–600

    Article  CAS  PubMed  Google Scholar 

  88. Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E (2003) Expression of matrix metalloproteinases, inhibitor, and acid phosphatase in muscles of immobilized hindlimbs of rats. Muscle Nerve 27:51–59

    Article  CAS  PubMed  Google Scholar 

  89. Berthon P, Duguez S, Favier FB, Amirouche A, Feasson L, Vico L et al (2007) Regulation of ubiquitin-proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading. Pflugers Arch 454:625–633

    Article  CAS  PubMed  Google Scholar 

  90. Giannelli G, De Marzo A, Marinosci F, Antonaci S (2005) Matrix metalloproteinase imbalance in muscle disuse atrophy. Histol Histopathol 20:99–106

    CAS  PubMed  Google Scholar 

  91. Wittwer M, Flück M, Hoppeler H, Müller S, Desplanches D, Billeter R (2002) Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 16:884–886

    CAS  PubMed  Google Scholar 

  92. Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu X, Lee DJ, Skittone LK, Natsuhara K, Kim HT (2010) Role of gelatinases in disuse-induced skeletal muscle atrophy. Muscle Nerve 41:174–178

    CAS  PubMed  Google Scholar 

  94. Peviani SM, Gomes AR, Selistre de Araujo HS, Salvini TF (2009) MMP-2 is not altered by stretching in skeletal muscle. Int J Sports Med 30:550–554

    Article  CAS  PubMed  Google Scholar 

  95. Warren GL, Summan M, Gao X, Chapman R, Hulderman T, Simeonova PP (2007) Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 582:825–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ferre PJ, Liaubet L, Concordet D, SanCristobal M, Uro-Coste E, Tosser-Klopp G et al (2007) Longitudinal analysis of gene expression in porcine skeletal muscle after post-injection local injury. Pharmacol Res 24:1480–1489

    Article  CAS  Google Scholar 

  97. Frisdal E, Teiger E, Lefaucheur JP, Adnot S, Planus E, Lafuma C et al (2000) Increased expression of gelatinases and alteration of basement membrane in rat soleus muscle following femoral artery ligation. Neuropathol Appl Neurobiol 26:11–21

    Article  CAS  PubMed  Google Scholar 

  98. Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA (2002) Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, Doxycycline. Eur J Vasc Endovasc Surg 23:260–269

    Article  CAS  PubMed  Google Scholar 

  99. Baum O, Ganster M, Baumgartner I, Nieselt K, Djonov V (2007) Basement membrane remodeling in skeletal muscles of patients with limb ischemia involves regulation of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases. J Vasc Res 44:202–213

    Article  CAS  PubMed  Google Scholar 

  100. Zimowska M, Brzoska E, Swierczynska M, Streminska W, Moraczewski J (2008) Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol 52:307–314

    Article  CAS  PubMed  Google Scholar 

  101. Urso ML, Szelenyi ER., Warren GL, Barnes BR (2010) Matrix metalloprotease-3 and tissue inhibitor of metalloprotease-1 mRNA and protein levels are altered in response to traumatic skeletal muscle injury. Eur J App Physiol 109:963–972

  102. Bobadilla M, Sainz N, Rodriguez JA, Abizanda G, Orbe J, de Martino A et al (2014) MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 32:447–461

    Article  CAS  PubMed  Google Scholar 

  103. Lei H, Leong D, Smith LR, Barton ER (2013) Matrix-metalloproteinase 13 (MMP-13) is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am J Physiol Cell Physiol 305:C529–C538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu N, Jansen ED, Davidson JM (2003) Comparison of mouse matrix metalloproteinase 13 expression in free-electron laser and scalpel incisions during wound healing. J Invest Dermatol 121:926–932

    Article  CAS  PubMed  Google Scholar 

  105. Bobadilla M, Sainz N, Abizanda G, Orbe J, Rodriguez JA, Paramo JA et al (2014) The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells Dev 23:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koskinen SO, Hoyhtya M, Turpeenniemi-Hujanen T, Martikkala V, Makinen TT, Oksa J et al (2001) Serum concentrations of collagen degrading enzymes and their inhibitors after downhill running. Scand J Med Sci Sports 11:9–15

    Article  CAS  PubMed  Google Scholar 

  107. Lo IK, Marchuk LL, Hollinshead R, Hart DA, Frank CB (2004) Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons. Am J Sports Med 32:1223–1229

    Article  PubMed  Google Scholar 

  108. Thornton GM, Shao X, Chung M, Sciore P, Boorman RS, Hart DA et al (2010) Changes in mechanical loading lead to tendonspecific alterations in MMP and TIMP expression: influence of stress deprivation and intermittent cyclic hydrostatic compression on rat supraspinatus and achilles tendons. Br J Sports Med 44:698–703

    Article  CAS  PubMed  Google Scholar 

  109. Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80:693–703

    Article  PubMed  PubMed Central  Google Scholar 

  110. Reider B (2014) Big D. Am J Sports Med 42:25–26

    Google Scholar 

  111. Bedi A, Fox AJS, Kovacevic D, Deng X-h, Warren RF, Rodeo SA (2010) Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med 38:308–317

    Article  PubMed  Google Scholar 

  112. Bedi A, Kovacevic D, Hettrich C, Gulotta LV, Ehteshami JR, Warren RF et al (2010) The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elb Surg 19:384–391

    Article  Google Scholar 

  113. Dalakas MC (2015) Inflammatory muscle diseases. N Engl J Med 372:1734–1747

    Article  PubMed  Google Scholar 

  114. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41

    Article  CAS  PubMed  Google Scholar 

  115. Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A (2009) Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets 10:1245–1254

    Article  CAS  PubMed  Google Scholar 

  116. Schoser BG, Blottner D (1999) Matrix metalloproteinases MMP-2, MMP-7 and MMP-9 in denervated human muscle. Neuroreport 10:2795–2797

    Article  CAS  PubMed  Google Scholar 

  117. Kieseier BC, Schneider C, Clements JM, Gearing AJ, Gold R, Toyka KV et al (2001) Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 124:341–351

    Article  CAS  PubMed  Google Scholar 

  118. Choi YC, Dalakas MC (2000) Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 54:65–71

    Article  CAS  PubMed  Google Scholar 

  119. Schoser BGH, Blottner D, Stuerenburg HJ (2002) Matrix metalloproteinases in inflammatory myopathies: enhanced immunoreactivity near atrophic myofibers. Acta Neurol Scand 105:309–313

    Article  CAS  PubMed  Google Scholar 

  120. Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  CAS  PubMed  Google Scholar 

  121. McAdam LC, Mayo AL, Alman BA, Biggar WD (2012) The Canadian experience with long-term deflazacort treatment in Duchenne muscular dystrophy. Acta Myol 31:16–20

    PubMed  PubMed Central  Google Scholar 

  122. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  123. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–189

    Article  CAS  PubMed  Google Scholar 

  124. Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I et al (2001) Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121

    Article  CAS  PubMed  Google Scholar 

  125. Jimenez-Mallebrera C, Torelli S, Brown SC, Feng L, Brockington M, Sewry CA et al (2003) Profound skeletal muscle depletion of alpha-dystroglycan in Walker-Warburg syndrome. Eur J Paediatr Neurol 7:129–137

    Article  PubMed  Google Scholar 

  126. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N et al (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  CAS  PubMed  Google Scholar 

  127. Johnson EK, Li B, Yoon JH, Flanigan KM, Martin PT, Ervasti J et al (2013) Identification of new dystroglycan complexes in skeletal muscle. PLoS One 8:e73224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yamada H, Saito F, Fukuta-Ohi H, Zhong D, Hase A, Arai K et al (2001) Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum Mol Genet 10:1563–1569

    Article  CAS  PubMed  Google Scholar 

  129. Bozzi M, Sciandra F, Brancaccio A (2015) Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 44–46:130–137

    Article  PubMed  CAS  Google Scholar 

  130. Verhaart IE, Aartsma-Rus A (2012) Gene therapy for Duchenne muscular dystrophy. Curr Opin Neurol 25:588–596

    Article  CAS  PubMed  Google Scholar 

  131. Skuk D, Tremblay JP (2011) Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin Biol Ther 11:359–374

    Article  PubMed  Google Scholar 

  132. Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176

    Article  PubMed  Google Scholar 

  133. Morgan JE, Partridge TA (1992) Cell transplantation and gene therapy in muscular dystrophy. BioEssays 14:641–645

    Article  CAS  PubMed  Google Scholar 

  134. Von Moers A, Zwirner A, Reinhold A, Bruckmann O, van Landeghem F, Stoltenburg-Didinger G et al (2005) Increased mRNA expression of tissue inhibitors of metalloproteinase-1 and -2 in Duchenne muscular dystrophy. Acta Neuropathol 109:285–293

    Article  CAS  Google Scholar 

  135. Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S et al (2010) Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 297:19–28

    Article  CAS  PubMed  Google Scholar 

  136. Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne muscular dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10:758–769

    Article  CAS  PubMed  Google Scholar 

  137. Zanotti S, Gibertini S, Mora M (2010) Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment. Cell Tissue Res 339:397–410

    Article  CAS  PubMed  Google Scholar 

  138. Zanotti S, Saredi S, Ruggieri A, Fabbri M, Blasevich F, Romaggi S et al (2007) Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes. Matrix Biol 26:615–624

    Article  CAS  PubMed  Google Scholar 

  139. Bolliger MF, Zurlinden A, Lüscher D, Bütikofer L, Shakhova O, Francolini M et al (2010) Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. J Cell Sci 123:3944–3955

    Article  CAS  PubMed  Google Scholar 

  140. Choi HY, Liu Y, Tennert C, Sugiura YI, A K, Kröger S, et al. (2013) APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. elife 2013 2:e00220

    Google Scholar 

  141. Ruegg MA, Bixby JL (1998) Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 21:22–27

    Article  CAS  PubMed  Google Scholar 

  142. Bütikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P (2011) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 25:4378–4393

    Article  PubMed  CAS  Google Scholar 

  143. Drey M, Sieber CC, Bauer JM, Uter W, Dahinden P, Fariello RG et al (2013) C-terminal Agrin fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp Gerontol 48:76–80

    Article  CAS  PubMed  Google Scholar 

  144. Van Saun M, Werle MJ (2000) Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol 43:140–149

    Article  Google Scholar 

  145. VanSaun M, Herrera AA, Werle MJ (2003) Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol 32:1129–1142

    Article  CAS  PubMed  Google Scholar 

  146. Werle MJ, VanSaun M (2003) Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. J Neurocytol 32:905–913

    Article  CAS  PubMed  Google Scholar 

  147. Chao T, Frump D, Lin M, Caiozzo VJ, Mozaffar T, Steward O et al (2013) Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury. Ann Neurol 73:210–223

    Article  CAS  PubMed  Google Scholar 

  148. Demestre M, Parkin-Smith G, Petzold A, Pullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154

    Article  CAS  PubMed  Google Scholar 

  149. Ozawa J, Kurose T, Kawamata S, Kaneguchi A, Moriyama H, Kito N (2013) Regulation of connective tissue remodeling in the early phase of denervation in a rat skeletal muscle. Biomed Res 34:251–258

    Article  CAS  PubMed  Google Scholar 

  150. Kaplan A, Spiller Krista J, Towne C, Kanning Kevin C, Choe Ginn T, Geber A et al (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348

    Article  CAS  PubMed  Google Scholar 

  151. Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer K, Weber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11:3419–3422

    Article  CAS  PubMed  Google Scholar 

  152. Lorenzl S, Albers DS, LeWitt PA, Chirichigno JW, Hilgenberg SL, Cudkowicz ME et al (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 207:71–76

    Article  CAS  PubMed  Google Scholar 

  153. Niebroj-Dobosz I, Janik P, Sokołowska B, Kwiecinski H (2010) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol 17:226–231

    Article  CAS  PubMed  Google Scholar 

  154. Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M et al (2006) The matrix metalloproteinases inhibitor Ro 26-2853 extends survival in transgenic ALS mice. Exp Neurol 200:166–171

    Article  CAS  PubMed  Google Scholar 

  155. Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J et al (2010) MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci 294:51–56

    Article  CAS  PubMed  Google Scholar 

  156. Soon CP, Crouch PJ, Turner BJ, McLean CA, Laughton KM, Atkin JD et al (2010) Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscul Disord 20:260–266

    Article  PubMed  Google Scholar 

  157. Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10:268–278

    Article  CAS  PubMed  Google Scholar 

  158. Zanoteli E, van de Vlekkert D, Bonten EJ, Hu H, Mann L, Gomero EM et al (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802:659–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5(Suppl 1):S5

    Google Scholar 

  160. Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195

    CAS  PubMed  Google Scholar 

  161. Serrano AL, Munoz-Canoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316:3050–3058

    Article  CAS  PubMed  Google Scholar 

  162. Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3:337–341

    Article  Google Scholar 

  163. Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E et al (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97:1703–1711

    Article  CAS  PubMed  Google Scholar 

  164. Nagamine Y, Medcalf RL, Munoz-Canoves P (2005) Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 93:661–675

    CAS  PubMed  Google Scholar 

  165. Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S et al (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Asp Med 33:119–208

    Article  CAS  Google Scholar 

  166. Alameddine HS (2012) Matrix metalloproteinases in skeletal muscles: friends or foes? Neurobiol Dis 48:508–518

    Article  CAS  PubMed  Google Scholar 

  167. Goetzl EJ, Banda MJ, Leppert D (1996) Matrix metalloproteinases in immunity. J Immunol 156:1–4

    CAS  PubMed  Google Scholar 

  168. Sopata I, Dancewicz AM (1974) Presence of a gelatin-specific proteinase and its latent form in human leucocytes. Biochim Biophys Acta 370:510–523

    Article  CAS  PubMed  Google Scholar 

  169. Mainardi CL, Hibbs MS, Hasty KA, Seyer JM (1984) Purification of a type V collagen degrading metalloproteinase from rabbit alveolar macrophages. Coll Relat Res 4:479–492

    Article  CAS  PubMed  Google Scholar 

  170. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S et al (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69:851–859

    CAS  PubMed  Google Scholar 

  171. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 167:4008–4016

    Article  CAS  PubMed  Google Scholar 

  172. Chakrabarti S, Zee JM, Patel KD (2006) Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J Leukoc Biol 79:214–222

    Article  CAS  PubMed  Google Scholar 

  173. Cowland JB, Borregaard N (1999) The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol 66:989–995

    CAS  PubMed  Google Scholar 

  174. Kolaczkowska E, Arnold B, Opdenakker G (2008) Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology 213:109–124

    Article  CAS  PubMed  Google Scholar 

  175. Gorospe JR, Tharp MD, Hinckley J, Kornegay JN, Hoffman EP (1994) A role for mast cells in the progression of Duchenne muscular dystrophy? Correlations in dystrophin-deficient humans, dogs, and mice. J Neurol Sci 122:44–56

    Article  CAS  PubMed  Google Scholar 

  176. Hodgetts S, Radley H, Davies M, Grounds MD (2006) Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 16:591–602

    Article  PubMed  Google Scholar 

  177. Cai B, Spencer MJ, Nakamura G, Tseng-Ong L, Tidball JG (2000) Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors. Am J Pathol 156:1789–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243

    Google Scholar 

  179. Zanotti S, Gibertini S, Di Blasi C, Cappelletti C, Bernasconi P, Mantegazza R et al (2011) Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathol 59:1215–1228

    Article  Google Scholar 

  180. Nadarajah VD, van Putten M, Chaouch A, Garrood P, Straub V, Lochmuller H et al (2011) Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 21:569–578

    Article  CAS  PubMed  Google Scholar 

  181. Rodolico C, Mazzeo A, Toscano A, Messina S, Aguennouz M, Gaeta M et al (2005) Specific matrix metalloproteinase expression in focal myositis: an immunopathological study. Acta Neurol Scand 112:173–177

    Article  CAS  PubMed  Google Scholar 

  182. Ogura Y, Tajrishi MM, Sato S, Hindi SM, Kumar A (2014) Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497

    Article  CAS  Google Scholar 

  184. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  185. Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G (2000) T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Investig 80:881–891

    Article  CAS  PubMed  Google Scholar 

  186. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ et al (1996) Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 271:14657–14660

    Article  CAS  PubMed  Google Scholar 

  187. Schonbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 161:3340–3346

    CAS  PubMed  Google Scholar 

  188. Atfi A, Dumont E, Colland F, Bonnier D, L’Helgoualc’h A, Prunier C et al (2007) The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol 178:201–208

    Google Scholar 

  189. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295

    Article  CAS  PubMed  Google Scholar 

  190. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  191. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E (2008) Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 215:410–421

    Article  CAS  PubMed  Google Scholar 

  193. Yang M, Huang H, Li J, Huang W, Wang H (2007) Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts. Wound Repair Regen 15:817–824

    Article  PubMed  Google Scholar 

  194. Bhattacharyya S, Wu M, Fang F, Tourtellotte W, Feghali-Bostwick C, Varga J (2011) Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fukaya S, Matsui Y, Tomaru U, Kawakami A, Sogo S, Bohgaki T et al (2013) Overexpression of TNF-alpha-converting enzyme in fibroblasts augments dermal fibrosis after inflammation. Lab Investig 93:72–80

    Article  CAS  PubMed  Google Scholar 

  196. Lurton J, Soto H, Narayanan A, Raghu G (1999) Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha. Exp Lung Res 25:151–164

    Article  CAS  PubMed  Google Scholar 

  197. Piers AT, Lavin T, Radley-Crabb HG, Bakker AJ, Grounds MD, Pinniger GJ (2011) Blockade of TNF in vivo using cV1q antibody reduces contractile dysfunction of skeletal muscle in response to eccentric exercise in dystrophic mdx and normal mice. Neuromuscul Disord 21:132–141

    Article  CAS  PubMed  Google Scholar 

  198. Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18:227–238

    Article  PubMed  Google Scholar 

  199. Gosselin LE, Martinez DA (2004) Impact of TNF-alpha blockade on TGF-beta1 and type I collagen mRNA expression in dystrophic muscle. Muscle Nerve 30:244–246

    Article  CAS  PubMed  Google Scholar 

  200. Lovelock JD, Baker AH, Gao F, Dong J-F, Bergeron AL, McPheat W et al (2005) Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart C 288:H461–H468

    Article  CAS  Google Scholar 

  201. Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ikeda SI (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 9:1787–1799

    Article  CAS  Google Scholar 

  202. Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K et al (2008) Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell B 40:2183–2191

    Article  CAS  Google Scholar 

  203. Liu X (2011) Emerging ideas: matrix metalloproteinase-2 in muscle atrophy. Clin Orthop Relat R 469:1797–1799

    Article  Google Scholar 

  204. Hnia K, Hugon G, Rivier F, Masmoudi A, Mercier J, Mornet D (2007) Modulation of p38 mitogen-activated protein kinase cascade and metalloproteinase activity in diaphragm muscle in response to free radical scavenger administration in dystrophin-deficient mdx mice. Am J Pathol 170:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S et al (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dahiya S, Bhatnagar S, Hindi SM, Jiang C, Paul PK, Kuang S et al (2011) Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 20:4345–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mehan R, Greybeck B, Emmons K, Byrnes W, Allen D (2011) Matrix metalloproteinase-9 deficiency results in decreased fiber cross-sectional area and alters fiber type distribution in mouse hindlimb skeletal muscle. Cells Tissues Organs 194:510–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Coenen-Stass AM, McClorey G, Manzano R, Betts CA, Blain A, Saleh AF et al (2015) Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Sci Rep 5:17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG et al (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 104:264–269

    Article  CAS  PubMed  Google Scholar 

  210. Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D'Angelo G et al (2010) Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 160:1550–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zordan P, Sciorati C, Campana L, Cottone L, Clementi E, Querini PR et al (2013) The nitric oxide-donor molsidomine modulates the innate inflammatory response in a mouse model of muscular dystrophy. Eur J Pharmacol 715:296–303

    Article  CAS  PubMed  Google Scholar 

  212. Bedair H, Liu TT, Kaar JL, Badlani S, Russell AJ, Li Y et al (2007) Matrix metalloproteinase-1 therapy improves muscle healing. J Appl Physiol 102:2338–2345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank K.Mamchaoui and V. Mouly for generously providing primary human myogenic cells and the AFM-Telethon (Association Française contre les Myopathies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala S. Alameddine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Alameddine, H.S. (2017). The Matrix Metalloproteinase and Tissue Inhibitors of Metalloproteinase Balance in Physiological and Pathological Remodeling of Skeletal Muscles. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_3

Download citation

Publish with us

Policies and ethics