Skip to main content
Log in

Longitudinal Analysis of Gene Expression in Porcine Skeletal Muscle After Post-Injection Local Injury

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to describe the time course of gene expression in a skeletal muscle local injury induced by an intramuscular (IM) injection, and to compare the dynamics of gene expression with pathological events.

Materials and Methods

Ten piglets received 4 IM injections of propylene glycol in the longissimus dorsi muscles 6 h, 2, 7, and 21 days before euthanasia, where control and injected muscle sites were sampled for RNA isolation and microscopic examination. The hybridization of nylon cDNA microarrays was carried out with radioactive probes obtained from the muscle RNA.

Results

153 genes were found under- or over-expressed at least once among the investigated time-conditions. The eight most discriminant genes were also identified: Two genes (GTP-binding protein RAD and Ankyrin repeat domain protein) were over-expressed at 6 h and six genes between 2 and 21 days (Osteonectin, Fibronectin, Matrix metalloproteinase-2, Collagen alpha 1(I) chain, Collagen alpha 2(I) chain, and Thymosin beta-4). Necrosis, inflammation and regeneration were observed through both the dynamics of gene expression profiles and through the microscopic examinations.

Conclusion

Our data demonstrate that several pathways are involved in post-injection muscle injury, and that necrosis, inflammation and regeneration are not sequential but occur in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. F. Hill. Sites for intramuscular injections. J. Pediatr. 70:158–159 (1967).

    Article  PubMed  CAS  Google Scholar 

  2. D. J. Greenblatt, and M. D. Allen. Intramuscular injection-site complications. Jama 240:542–544 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. P. C. Beecroft, and S. Redick. Possible complications of intramuscular injections on the pediatric unit. Pediatr. Nurs. 15:333–336 (1989).

    PubMed  CAS  Google Scholar 

  4. E. V. Alvarez, M. Munters, L. S. Lavine, H. Manes, and J. Waxman. Quadriceps myofibrosis. A complication of intramuscular injections. J. Bone Joint Surg. Am. 62:58–60 (1980).

    PubMed  CAS  Google Scholar 

  5. S. S. Babhulkar. Triceps contracture caused by injections. A report of 11 cases. J. Bone Joint Surg. Br. 67:94–96 (1985).

    PubMed  CAS  Google Scholar 

  6. P. S. Bergeson, S. A. Singer, and A. M. Kaplan. Intramuscular injections in children. Pediatrics 70:944–948 (1982).

    PubMed  CAS  Google Scholar 

  7. L. Rossi, and D. Conen. Intramuscular injections–an outdated form of administration? 6 cases of Staphylococcus aureus sepsis following intramuscular injections. Schweiz. Med. Wochensch. 125:1477–1482 (1995).

    PubMed  CAS  Google Scholar 

  8. R. K. Gherardi, M. Coquet, P. Cherin, L. Belec, P. Moretto, P. A. Dreyfus, J. F. Pellissier, P. Chariot, and F. J. Authier. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124:1821–1831 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. J. G. Tidball. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R345–R353 (2005).

    PubMed  CAS  Google Scholar 

  10. P. J. Ferre, E. Thein, I. Raymond-Letron, P. L. Toutain, and H. P. Lefebvre. Acute changes in muscle blood flow and concomitant muscle damage after an intramuscular administration. Pharm. Res. 22:405–412 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. F. Mottu, A. Laurent, D. A. Rufenacht, and E. Doelker. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. PDA J. Pharm. Sci. Technol. 54:456–469 (2000).

    PubMed  CAS  Google Scholar 

  12. G. A. Brazeau, and H. L. Fung. Mechanisms of creatine kinase release from isolated rat skeletal muscles damaged by propylene glycol and ethanol. J. Pharm. Sci. 79:393–397 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. S. C. Fahrenkrug, T. P. Smith, B. A. Freking, J. Cho, J. White, J. Vallet, T. Wise, G. Rohrer, G. Pertea, R. Sultana, J. Quackenbush, and J. W. Keele. Porcine gene discovery by normalized cDNA-library sequencing and EST cluster assembly. Mamm. Genome 13:475–478 (2002).

    Article  PubMed  Google Scholar 

  14. A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29:365–371 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. F. Lopez, J. Rougemont, B. Loriod, A. Bourgeois, L. Loi, F. Bertucci, P. Hingamp, R. Houlgatte, and S. Granjeaud. Feature extraction and signal processing for nylon DNA microarrays. BMC Genomics 5:38 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. L. Breiman. Random forests. Mac. Learn. 45:5–32 (2001).

    Article  Google Scholar 

  17. D. B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, and S. K. Kurdistani. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. R. Diaz-Uriarte, and S. Alvarez de Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. L. H. Saal, C. Troein, J. Vallon-Christersson, S. Gruvberger, A. Borg, and C. Peterson. BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome. Biol. 3:SOFTWARE0003 (2002).

    Google Scholar 

  20. W. G. Campbell, S. E. Gordon, C. J. Carlson, J. S. Pattison, M. T. Hamilton, and F. W. Booth. Differential global gene expression in red and white skeletal muscle. Am. J. Physiol. Cell Physiol. 280:C763–C768 (2001).

    PubMed  CAS  Google Scholar 

  21. Q. Bai, C. McGillivray, N. da Costa, S. Dornan, G. Evans, M. J. Stear, and K. C. Chang. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 4:8 (2003).

    Article  PubMed  Google Scholar 

  22. K. Sudre, C. Leroux, G. Pietu, I. Cassar-Malek, E. Petit, A. Listrat, C. Auffray, B. Picard, P. Martin, and J. F. Hocquette. Transcriptome analysis of two bovine muscles during ontogenesis. J. Biochem. (Tokyo) 133:745–756 (2003).

    CAS  Google Scholar 

  23. M. Summan, M. McKinstry, G. L. Warren, T. Hulderman, D. Mishra, K. Brumbaugh, M. I. Luster, and P. P. Simeonova. Inflammatory mediators and skeletal muscle injury: a DNA microarray analysis. J. Interferon. Cytokine Res. 23:237–245 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. G. A. Brazeau, and H. L. Fung. Use of an in vitro model for the assessment of muscle damage from intramuscular injections: in vitro–in vivo correlation and predictability with mixed solvent systems. Pharm. Res. 6:766–771 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. T. Hurme, H. Kalimo, M. Lehto, and M. Jarvinen. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med. Sci. Sports Exerc. 23:801–810 (1991).

    PubMed  CAS  Google Scholar 

  26. H. P. Lefebvre, V. Laroute, J. P. Braun, V. Lassourd, and P. L. Toutain. Non-invasive and quantitative evaluation of post-injection muscle damage by pharmacokinetic analysis of creatine kinase release. Vet. Res. 27:343–361 (1996).

    PubMed  CAS  Google Scholar 

  27. P. J. Ferre, D. Concordet, V. Laroute, G. P. Chanoit, J. P. Ferre, M. Manesse, and H. P. Lefebvre. Comparison of ultrasonography and pharmacokinetic analysis of creatine kinase release for quantitative assessment of postinjection muscle damage in sheep. Am. J. Vet. Res. 62:1698–1705 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. A. Ishii, and S. H. Lo. A role of tensin in skeletal-muscle regeneration. Biochem. J. 356:737–745 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. C. Bean, M. Salamon, A. Raffaello, S. Campanaro, A. Pallavicini, and G. Lanfranchi. The Ankrd2, Cdkn1c and calcyclin genes are under the control of MyoD during myogenic differentiation. J. Mol. Biol. 349:349–366 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. S. Kojic, E. Medeot, E. Guccione, H. Krmac, I. Zara, V. Martinelli, G. Valle, and G. Faulkner. The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J. Mol. Biol. 339:313–325 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. A. Pallavicini, S. Kojic, C. Bean, M. Vainzof, M. Salamon, C. Ievolella, G. Bortoletto, B. Pacchioni, M. Zatz, G. Lanfranchi, G. Faulkner, and G. Valle. Characterization of human skeletal muscle Ankrd2. Biochem. Biophys. Res. Commun. 285:378–386 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. A. D. Bradshaw, and E. H. Sage. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Invest. 107:1049–1054 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. R. A. Brekken, and E. H. Sage. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 19:569–580 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. C. Strup-Perrot, D. Mathe, C. Linard, D. Violot, F. Milliat, A. Francois, J. Bourhis, and M. C. Vozenin-Brotons. Global gene expression profiles reveal an increase in mRNA levels of collagens, MMPs, and TIMPs in late radiation enteritis. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G875–G885 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. J. D. Young, A. J. Lawrence, A. G. MacLean, B. P. Leung, I. B. McInnes, B. Canas, D. J. Pappin, and R. D. Stevenson. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 5:1424–1427 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. K. M. Malinda, G. S. Sidhu, H. Mani, K. Banaudha, R. K. Maheshwari, A. L. Goldstein, and H. K. Kleinman. Thymosin beta4 accelerates wound healing. J. Invest. Dermatol. 113:364–368 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The muscle specific cDNA library used in this work was kindly provided by Christian Bendixen. The authors thank Rémi Houlgatte (TAGC, Marseille, France) for critical discussions about/on Nylon microarray methodology and data analysis. We thank Jean-Pierre Gau, Nadine Gautier, Francis Benne, and Janine Rallières for their technical assistance. We wish to acknowledge support from the CRGS platform of the Toulouse Midi-Pyrenees Genopole (Cécile Donnadieu-Tonon) (http://genopole-toulouse.prd.fr/), where the nylon membranes were produced. The database with BASE software for MIAME submission was developed by Christelle Dantec and managed by a computer group (SIGENAE, Système d’information du projet d’analyse des génomes des animaux d’élevage, http://www.sigenae.org). We thank the work group for statistical analysis of microarray data (Philippe Besse, Alain Baccini, Sébastien Déjean, http://www.lsp.ups-tlse.fr/Programmes/Biopuces/) for their advice in the RF analysis and to Christèle Robert-Granié for helpful discussions on the statistical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé P. Lefebvre.

Additional information

PJF and LL contributed equally to this work and both should be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferré, P.J., Liaubet, L., Concordet, D. et al. Longitudinal Analysis of Gene Expression in Porcine Skeletal Muscle After Post-Injection Local Injury. Pharm Res 24, 1480–1489 (2007). https://doi.org/10.1007/s11095-007-9266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9266-8

Key words

Navigation