Skip to main content

Interaction between contraction and coronary flow: Theory

  • Chapter
Coronary Blood Flow

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 124))

Abstract

Heart contraction affects coronary perfusion in two experimentally distinguishable ways; the time averaged flow through the myocardium is reduced, depending on the depth in the heart muscle, and the flow is pulsatile. The relation between these two phenomena is not trivial and is hard to study because of technical difficulties. Up to now almost all experimental studies on the transmural distribution of flow during contraction were hampered by the fact that flow measurements are time averaged rather than instantaneous. On the other hand, information on the pulsatile nature of coronary flow is obtained from measurements on epicardial arteries or veins and hence provide a time varying flow signal per unit muscle mass which is the space average of the pulsatile flow over the different layers. As long as we are unable to measure time varying flow at different depths within the myocardium, the relation between space dependent time averaged flow and time dependent space averaged flow has to be determined by predictive models. These models postulate a mechanism for the effect of contraction on the coronary vasculature, resulting in mathematical predictions of, amongst others, coronary arterial or venous pressure-flow relations and microsphere distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arts MGJ (1978) A mathematical model of the dynamics of the left ventricle and the coronary circulation. PhD Thesis. University of Limburg, Maastricht, The Netherlands.

    Google Scholar 

  2. Arts T, Veenstra PC, Reneman RS (1982) Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H379–H390.

    PubMed  CAS  Google Scholar 

  3. Bellamy RF, O’Benar JD (1984) Cessation of arterial and venous flow at a finite driving pressure in porcine coronary circulation. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H525–H531.

    PubMed  CAS  Google Scholar 

  4. Bruinsma P, Arts T, Dankelman J, Spaan JAE (1988) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res. Cardiol. 83: 510–524.

    Article  PubMed  CAS  Google Scholar 

  5. Burattini R, Sipkema P, van Huis GA, Westerhof N (1985) Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model Ann. Biomed. Eng. 13: 385–404.

    Article  PubMed  CAS  Google Scholar 

  6. Dankelman J, Stassen HG, Spaan JAE (1990) Coronary circulation mechanics. In: Coronary circulation. Basic mechanics and clinical relevance. Eds. Kajiya F, Klassen GA, Spaan JAE, Hoffman JIE. Springer-Verlag Tokyo: 75–87.

    Google Scholar 

  7. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36: 753–760.

    Article  PubMed  CAS  Google Scholar 

  8. Goto M, Jansen CMA, Stork MM, Flynn AE, Coggins DL, Husseini W, Hoffman JIE (1989) Effects of myocardial contraction on intramyocardial vessels. Circulation 80 Suppl. II: 212.

    Google Scholar 

  9. Goto M, Flynn AE, Doucette JW, Muehrcke D, Jansen CMA, Husseini W, Hoffman JIE (1990) Impeding effect of myocardial contraction on regional blood flow. FASEB J: A404.

    Google Scholar 

  10. Gregg DE, Green HD (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am. J. Physiol. 130: 114–125.

    Google Scholar 

  11. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H1216–H1223.

    PubMed  CAS  Google Scholar 

  12. Hoffman JIE, Spaan JAE (1990) Pressure-flow relations in the coronary circulation. Physiol. Rev. 70: 331–390.

    PubMed  CAS  Google Scholar 

  13. Krams R, Sipkema P, Westerhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1471–1479.

    PubMed  CAS  Google Scholar 

  14. Krams R, Sipkema P, Westerhof N (1989) Can coronary systolicdiastolic flow difference be predicted by left ventricular pressure or timevarying intramyocardial elastance. Basic Res. Cardiol. 84: 149–159.

    Article  PubMed  CAS  Google Scholar 

  15. Krams R, Sipkema P, Zegers J, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1936–H1944.

    PubMed  CAS  Google Scholar 

  16. Krams R (1988) The effects of cardiac contraction on coronary flow. PhD Thesis. Free University of Amsterdam, The Netherlands.

    Google Scholar 

  17. Lee J, Chambers DE, Akizuki S, Downey JM (1984) The role of vascular capacitance in the coronary arteries. Circ. Res. 55: 751–762.

    Article  PubMed  CAS  Google Scholar 

  18. Levy BI, Samuel JL, Tedgui A, Kotelianski V, Marotte F, Poitevin P, Chadwick RS (1988) Intramyocardial blood volume in the left ventricle of rat arrested hearts. In: Cardiovascular dynamics and models. Eds. Brun P, Chadwick RS, Levy BI. INSERM, Paris: 65–71.

    Google Scholar 

  19. Munch DF, Comer HT, Downey JM. (1980) Barium contracture: a model for systole. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H438–H442.

    PubMed  CAS  Google Scholar 

  20. Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J. Appl. Phys. 18: 924–932.

    CAS  Google Scholar 

  21. Raff WK, Rosche F, Goebel H, Lochner W (1972) Die extravasale Komponente des Coronarwiderstandes mit steigendem linksventrikulären Druck. Pflügers Arch. 333: 352–361.

    Article  PubMed  CAS  Google Scholar 

  22. Sabiston DC Jr, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15: 14–20.

    Article  PubMed  Google Scholar 

  23. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322.

    Article  PubMed  CAS  Google Scholar 

  24. Sun Y, Gewirtz H (1987) Characterization of the coronary vascular capacitance, resistance and flow in endocardium and epicardium based on a nonlinear dynamic analog model. IEEE Trans Biomed. Eng. 34: 817–825.

    Article  PubMed  CAS  Google Scholar 

  25. Westerhof N, Sipkema P., VanHuis GA (1983) Coronary pressure-flow relations and the vascular waterfall. Cardiovasc. Res. 17: 162–169.

    Article  PubMed  CAS  Google Scholar 

  26. Westerhof N (1990) Physiological hypotheses-Intramyocardial pressure. A new concept, suggestions for measurement. Basic Res. Cardiol. 85: 105–119.

    Article  PubMed  CAS  Google Scholar 

  27. Wüsten B, Buss DD, Deist H, Schaper W (1977) Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res. Cardiol. 72: 636–650.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spaan, J.A.E. (1991). Interaction between contraction and coronary flow: Theory. In: Coronary Blood Flow. Developments in Cardiovascular Medicine, vol 124. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3148-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3148-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5388-4

  • Online ISBN: 978-94-011-3148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics