Skip to main content

Quantifying heterogeneity: flow cytometry of bacterial cultures

  • Chapter
Quantitative Aspects of Growth and Metabolism of Microorganisms

Abstract

Flow cytometry is a technique which permits the characterisation of individual cells in populations, in terms of distributions in their properties such as DNA content, protein content, viability, enzyme activities and so on. We review the technique, and some of its recent applications to microbiological problems. It is concluded that cellular heterogeneity, in both batch and continuous axenic cultures, is far greater than is normally assumed. This has important implications for the quantitative analysis of microbial processes.

‘In contrast to standard microbiological, genetic or biochemical techniques, this method provides information on individual cells, and not just average values for the popUlation. This ability to analyze individual cells is invaluable in studying the distribution of cell parameters in a polydisperse population. and gives access to information that cannot be obtained in any other way.’

Boye & Løbner-Olesen 1990

‘Flow cytometry has revolutionized the study of the cell cycle of eukaryotes. It is also possible to apply the flow cytometry principles to bacteria....The importance of the flow cytometry results should not be underestimated. They provide a crucial link in the analysis of the division cycle....While other experiments have substantially supported the initial membrane-elution results. the flow eytometry results determine the pattern of DNA replication without any perturbations of the cell.’

Cooper 1991

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman R, Hann AC, Phillips AP, Martin KL & Lloyd D (1990) Growth of Azotobacter vinelandii with correlation of Coulter cell size, flow cytometric parameters, and ultrastructure. Cytometry 11: 822–831

    Article  PubMed  CAS  Google Scholar 

  • Allman R, Schjerven T & Boye E (1991) Cell-cycle parameters of E. coli K-12 strains determined using flow cytometry. J. Bacteriol. (in press)

    Google Scholar 

  • Amman RI, Binder BJ, Olsen RJ, Chisholm SW, Devereux R & Stahl DA (1990) Combination of 16S rRNA-targetted probes with flow cytometry for analysing mixed microbial populations. Appl. Env. Microbiol. 56: 1919–1925

    Google Scholar 

  • An G-H, Bielich J, Auerbach R & Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting Bio/Technology 9: 70–73

    Article  Google Scholar 

  • Aoyama T & Ichikawa H (1991) Basic operating characteristics of neural networks when applied to structure-activity studies. Chem. Pharm. Bull. 39: 358–366

    Article  Google Scholar 

  • Austin B & Priest F (1986) Modern Bacterial Taxonomy. Van Nostrand Reinhold, Wokingham

    Google Scholar 

  • Bertin B, Bronx O & van Hoegaerden M (1990) Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe. J. Microbiol. Methods 12: 1–12

    Article  Google Scholar 

  • Betz JW, Aretz W & Härtel, W (1984) Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Boye E & Løbner-Olesen A (1990) Flow cytometry: illuminating microbiology. The New Biologist 2: 119–125

    PubMed  CAS  Google Scholar 

  • Caplan SR & Essig A (1983) Biocnergetics and Linear Nonequilibrium Thermodynamics. The Steady State. Cambridge/ Massachusetts, Harvard University Press

    Google Scholar 

  • Caulcott CA, Dunn A, Robertson HA, Cooper NS, Brown ME & Rhodes PM (1987) Investigation of the effect of growth enviroment on the stability of low-copy-number plasmids in Escherichia coll. J. Gen. Microbiol. 133: 1881–9

    PubMed  CAS  Google Scholar 

  • Causton DR (1987) A Biologist’s Advanced Mathematics (pp 48–72). Allen & Unwin, London

    Google Scholar 

  • Chao L & McBroom SM (1985) Evolution of transposable elements: an IS10 insertion increases fitness in Escherichia coli. Mol. Biol. Evol. 2: 359–369

    PubMed  CAS  Google Scholar 

  • Chatfield C & Collins AJ (1980) Introduction to Multivariatc Analysis (pp 57–81). Chapman & Hall, London

    Google Scholar 

  • Collins JM & Grogan WM (1991) Fluorescence quenching of a series of membrane probes measured in living cells by flow cytometry. Cytometry 12: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Cooper S (1991) Bacterial Growth and Division. Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles. Academic Press, San Diego

    Google Scholar 

  • Cunningham A (1990) Fluorescence pulse shape as a morphological indicatoor in the analysis of colonial microalgae by flow cytometry. J. Microbiol. Meth. 11: 27–36

    Article  Google Scholar 

  • Darzynkiewicz Z (1979) Acridine Organgc as a molecular probe in studies of nucleic acids in situ. Melamed MR, Mullaney

    Google Scholar 

  • PF & Mendelsohn ML (Eds) Flow Cytometry and Sorting (pp 285–316). Wiley, New York

    Google Scholar 

  • Darzynkiewicz Z & Crissman HA (Eds) (1990) Flow Cytometry. Academic Press, New York

    Google Scholar 

  • Davey CL, Dixon NM & Kell DB (1990a) FLOWTOVP: a spreadsheet method for linearising flow cytometric light-scattering data used in cell sizing. Binary 2: 119–125

    Google Scholar 

  • Davey CL, Kell DB & Dixon NM (1990b) SKATFIT: A program for determining the mode of growth of individual microbial cells from flow cytometric data. Binary 2: 127–132

    Google Scholar 

  • Dolbeare F & Smith R (1979) Flow cytoenzymology: rapid enzyme analysis of single cells. In: Melamed MR, Mullaney PF & Mendelsohn ML (Eds) Flow Cytometry and Sorting (pp 317–333). Wiley, New York

    Google Scholar 

  • Donachie WD, Jones NC & Teather N (1973) The bacterial cell cycle. Symp. Soc. Gen. Microbiol. 23: 9–45

    CAS  Google Scholar 

  • Dunlop EH & Ye SJ (1990) Micromixing in fermentors: metabolic changes in Saccharomyces cerevisiae and their relationship to fluid turbulence. Biotechnol. Bioeng. 36: 854–864

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen DE & Hartl DL (1983) Selection in chemostats. Microbiol. Rev. 47: 150–168

    CAS  Google Scholar 

  • Flury B & Riedwyl H (1988) Multivariate Statistics: A Practical Approach (pp 181–233). Chapman & Hall, London

    Book  Google Scholar 

  • Fowler JD & Dunlop EH (1989) Effects of reactant heterogeneity and mixing on catabolite repression in cultures of Saccharomyces cerevisiae. Biotechnol. Bioeng. 33: 1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Frelat G, Laplace-Builhe C & Grunwald D (1989) Microbial analysis by flow cytometry: present and future. In: Yen A (Ed) Flow Cytometry: Advanced Research and Clinical Applications, Vol 1 (pp 64–80). CRC Press, Boca Raton

    Google Scholar 

  • Goodfellow M, Jones D & Priest FG (Eds) (1985) Computer-assisted Bacterial Systematics. Academic Press, London

    Google Scholar 

  • Gibbs, JW (1902) Elementary Principles in Statistical Mechanics. New York, Scribner

    Google Scholar 

  • Glansdorff P & Prigogine I (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London

    Google Scholar 

  • Glass L & Mackey MC (1988) From Clocks to Chaos. The Rhythms of Life. Princeton University Press, Princeton

    Google Scholar 

  • Gleick J (1987) Chaos. Making a New Science. Viking Press, New York

    Google Scholar 

  • Gottschal JC (1990) Phenotypic response to environmental change. FEMS Microbiol. Ecol. 74: 93–102

    Article  CAS  Google Scholar 

  • Harris CM & Kell DB (1985) The estimation of microbial biomass. Biosensors J. 1: 17–84

    Article  CAS  Google Scholar 

  • Harvey JD (1983) Mathematics of microbial age and size distributions. In: Bazin MJ (Ed) Mathematics in Microbiology (pp 1–35). Academic Press, London

    Google Scholar 

  • Heinzle E, Dunn IJ, Furukawa K & Tanner RD (1982) Modelling of sustained oscillations in continuous culture of Saccharomyces cerevisiae. In: Halme A (Ed) Modelling and Control of Biotechnical Processes (pp 57–65). Pergamon Press, Oxford

    Google Scholar 

  • Höfle M (1983) Long-term changes in chemostat cultures of Cytophaga johnsonae. Appl. Env. Microbiol. 46: 1045–1053

    Google Scholar 

  • Horan NJ, Midgley M & Dawes EA (1981) Effect of starvation on transport, membrane potential and survival of Staphylococcus epidermidis under anaerobic conditions. J. Gen. Microbiol. 127: 223–230

    PubMed  CAS  Google Scholar 

  • Hunter JB & Asenjo JA (1990) A population balance model of enzymatic lysis of microbial cells. Biotechnol. Bioeng. 35: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Hutter K-J & Eipel HE (1978) Flow cytometric determination of cellular substances in algae, bacteria, moulds and yeasts. A. van Leeuwenhoek 44: 269–282

    Article  CAS  Google Scholar 

  • Ingram M, Cleary TJ, Price BJ. Price RL & Castro A (1982) Rapid detection of Legionella pneumophila by flow cytometry. Cytometry 3: 134–137

    Article  PubMed  CAS  Google Scholar 

  • Jepras RI (1991) Applications of photon correlation spectroscopy and flow cytometry to microbiology. PhD thesis, Centre for Applied Microbiology and Research

    Google Scholar 

  • Jones KL & Rhodes-Roberts ME (1981) The survival of marine bacteria under starvation conditions. J. Appl. Bacteriol. 50: 247–258

    Article  CAS  Google Scholar 

  • Kachel V, Messcrschmidt R & Hummel P (1990) Eight-parameter PC-AT based flow cytometric data system. Cytometry 11: 805–812

    Article  PubMed  CAS  Google Scholar 

  • Kamp F, Welch GR & Westerhoff HV (1988) Energy coupling and Hill cycles in enzymatic processes. Cell Biophys. 12: 201–236

    PubMed  CAS  Google Scholar 

  • Kaprelyants AS & Kell DB (1991) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J.Appl. Bacteriol. (in press)

    Google Scholar 

  • Kell DB (1987) The principles and potential of electrical admittance spectroscopy: an introduction. In: Turner APF, Ka-ruhe I & Wilson GS (Eds) Biosensors; Fundamentals and Applications (pp 427–468). Oxford University Press

    Google Scholar 

  • Kell DB (1988) Protonmotive energy-transducing systems: some physical principles and experimental approaches. In: Anthony CJ (Ed) Bacterial Energy Transduction (pp 429–490). London: Academic Press

    Google Scholar 

  • Kell DB, van Dam K & Westerhoff HV (1989) Control analysis of microbial growth and productivity. Symp. Soc. Gen. Microbiol. 44: 61–93

    CAS  Google Scholar 

  • Kjellberg S, Hermansson M, Marden P & Jones GW (1987) The transient phase between growth and non-growth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41: 25–49

    Article  Google Scholar 

  • Kohonen T (1989) Self-Organization and Associative Memory, 3rd edition. Springer, Heidelberg

    Book  Google Scholar 

  • Koizumi J & Aiba S (1989) Oscillatory behaviour of population density in continuous culture of genetically-engineered Bacillus stearothermophilus. Biotechnol. Bioeng. 34: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Krawiec S & Riley M (1990) Organization of the bacterial chromosome. Microbiol. Rev. 54: 502–539

    PubMed  CAS  Google Scholar 

  • Kruth HS (1982) Flow cytometry: rapid analysis of single cells. Anal. Biochem. 125: 225–242

    Article  PubMed  CAS  Google Scholar 

  • Kubitschek HE (1974) Operation of selection pressure on mi-crobial populations. Symp. Soc. Gen. Microbiol. 24: 105–130

    Google Scholar 

  • Levy GC, Wang S, Kumar P & Borer P (1991) Multidimensionalnuclear magnetic resonance spectroscopy and modeling of complex molecular structures: a challenge to today’s computer methods. Spectroscopy International 6: 22–34

    Google Scholar 

  • Lloyd D, Poole RK & Edwards SW (1982) The Cell Division Cycle. London, Academic Press

    Google Scholar 

  • Markx GH. Davey CL & Kell DB (1991a) The permittistat: a novel type of turbidostat. J. Gen. Microbiol. 137: 735–743

    Article  CAS  Google Scholar 

  • Markx GH, Davey CL & Kell DB (1991b) To what extent is the value of the Cole-Cole uof the (3-dielectric dispersion of cell suspensions accountable in terms of the cell size distribution? Bioelectrochem. Bioenerg. 25: 195–211

    Article  Google Scholar 

  • Mason CA, Hamer G & Bryers JD (1986) The death and lysis of microorganisms in environmental processes. FEMS Microbiol. Rev. 39: 373–401

    Article  CAS  Google Scholar 

  • Massart DL, Vandeginste BGM, Deming SN, Michotte Y & Kaufman L (1988) Chemometrics. Elsevier, Amsterdam

    Google Scholar 

  • Matin A, Auger EA, Blum PH & Schultz JE (1989) The genetic basis of starvation survival in non-differentiating bacteria. Annu. Rev. Microbiol. 43: 293–316

    Article  PubMed  Google Scholar 

  • McClelland JL & Rumclhart DE (1988) Explorations in Parallel Distributed Processing; A Handbook of Models, Programs and Exercises. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Melamed MR, Mullaney PF & Mendelsohn ML (Eds) (1979) Flow Cytometry and Sorting. New York, John Wiley

    Google Scholar 

  • Melamed MR, Lindmo T & Mendelsohn ML (Eds) (1990) Flow Cytometry and Sorting, 2nd edition. New York, Wiley-Liss

    Google Scholar 

  • Miller JS & Quarles JM (1990) Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry 11: 667–675

    CAS  Google Scholar 

  • Mitchison JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Moon FC (1987) Chaotic Vibrations. Wiley, New York Morita, RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv. Mier. Ecol. 6: 171–198

    Google Scholar 

  • Morita, RY (1988) Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34: 346–441

    Article  Google Scholar 

  • Mitchison, JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Muirhead KA, Horan PK & Poste G (1985) Flow cytometry: present and future. Bio/Technology 3: 337–356

    Article  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL & Sehaechter M (1989) Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Olson RJ, Vaulot D & Chisholm SW (1986) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res. 32: 1273–1280

    Article  Google Scholar 

  • Ormerod MG (Ed) (1990) Flow Cytometry: A Practical Approach. IRL Press, Oxford

    Google Scholar 

  • Otto R, Vije J, Ten Brink B, Klont B & Konings WN (1985) Energy metabolism in Streptococcus cremoris during lactose starvation. Arch. Microbiol. 141: 348–352

    Article  CAS  Google Scholar 

  • Pao Y-H (1989) Adaptive Pattern Recognition and Neural Net-Works. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Patchett RA, Back JP & Kroll RG (1990) Enumeration of bacteria by use of a commercial flow cytometer. J. Appl. Bacteriol. 69: (6), xxiii

    Google Scholar 

  • Pinder AC, Purdy PW, Poulter SAG & Clark DC (1990) Validation of flow cytometry for rapid enumeration of bacterial concentrations in pure cultures. J. Appl. Bacteriol. 69: 92100

    Google Scholar 

  • Poindexter, JS (1981) Oligotrophy: fast and famine existence. Adv. Microbial Ecol. 5: 63–89

    Article  CAS  Google Scholar 

  • Poolman B. Smid EJ, Veldkamp H & Konings WN (1987) Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J. Bacteriol. 149: 146 1–1468

    Google Scholar 

  • Postgate JR (1976) Death in microbes and macrobes. In: Gray TRG & Postgate JR (Eds) The Survival Of Vegetative Microbes (pp 1–19). Cambridge, Cambridge University Press

    Google Scholar 

  • Rahinovitch PS & June CH (1990a) Measurement of intracellular ionized calcium and membrane potential. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 32 (pp 651–668). New York, Wiley-Liss

    Google Scholar 

  • Rahinovitch PS & June CH (1990b) In: Ormerod JM (Ed) Flow Cytometry: A Practical Approach (pp 161–185). IRL Press, Oxford

    Google Scholar 

  • Robertson BR & Button DK (1989) Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry 10: 70–76

    Article  PubMed  CAS  Google Scholar 

  • Robinson JP, Durack G & Kelley S (1991) An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file. Cytometry 12: 82–90

    Article  PubMed  CAS  Google Scholar 

  • Ronot X, Bend L, Adolphe M & Mounolou J-C (1986) Mitochondria) analysis in living cells: the use of rhodamine 123 and flow Cytometry. Biology of the Cell 57: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Rose VS, Croall, IF & MacFie HJH (1991) An application of unsupervised neural network methodology (Kohonen topology-preserving mapping) to OSAR analysis. Qant. Struct.Act. Relat. 10: 6–15

    Article  CAS  Google Scholar 

  • Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379

    PubMed  CAS  Google Scholar 

  • Rutgers M, Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae. J. Gen. Microbiol. 133: 445–453

    PubMed  CAS  Google Scholar 

  • Salzman, GC (1982) Light scattering analysis of single cells. In: Catsimpoolas N. (Ed) Cell Analysis, Vol 1 (pp 111–143). Plenum Press, New York

    Chapter  Google Scholar 

  • Sanders CA, Yajko DM, Flynn W, Langlois RG, Nassos PS, Fulwycr M & Hadley WK (1990) Determination of guanineplus-cytosine content of bacterial DNA by dual laser flow cytometry. J. Gen. Microbiol. 136: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Scheper T, Hitzmann B, Rinas U & Schugerl K (1987) Flow cytometry for Escherichia colt for process monitoring. J. Biotechnol. 5: 139–148

    Article  CAS  Google Scholar 

  • Seo J-H & Bailey JE (1987) Cell cycle analysis of plasmidcontaining Escherichia colt HB101 populations with flow cytometry. Biotechnol. Bioeng. 30: 297–305

    Article  PubMed  CAS  Google Scholar 

  • Seo J-H, Srienc F & Bailey JE (1985) Flow cytometry analysis of plasmid amplification in Escherichia colt. Biotechnol. Progr. 1: 181–188

    Article  CAS  Google Scholar 

  • Shapiro HM (1988) Practical Flow Cytometry, 2nd edition. Alan R. Liss, New York

    Google Scholar 

  • Shapiro HM (1990) Flow cytometry in laboratory microbiology: new directions. ASM News:20 584–588

    Google Scholar 

  • Simpson PK (1990) Artificial Neural Systems: Foundations, Paradigms, Applications and Implementations Pergamon Press, New York

    Google Scholar 

  • Sinclair CG & Brown DE (1970) Effect of incomplete mixing on the analysis of the static behaviour of continuous cultures. Biotechnol. Bioeng. 12: 1001–1017

    Article  PubMed  CAS  Google Scholar 

  • Sinclair CG & Topiwala HH (1970) Model for continuous culture which considers the viablity concept. Biotechnol. Bioeng. 12: 1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Skarstad K, Steen HB & Boye E (1983) Cell cycle parameters of slowly growing Escherichia colt B/r studied by flow cytometry. J. Bacteriol. 154: 656–662

    PubMed  CAS  Google Scholar 

  • Sriene F, Arnold B & Bailey JE (1984) Characterization of intracellular accumulation of poly-(3-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol. Bioeng. 26: 982–987

    Article  Google Scholar 

  • Srienc F, Campbell JL & Bailey JE (1986) Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations. Cytometry 7: 132–141

    Article  PubMed  CAS  Google Scholar 

  • Srour EF, Leemhuis T, Brandt JE. van Besien K & Hofmann R (1991) Simultaneous use of rhodamine 123, phycoerthyrin, texas red and allophycocyanin for the isolation of human haematopoietic progenitor cells. Cytometry 12: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Steen HB (1990) Flow cytometric studies of microorganisms. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 29 (pp 605–622). Wiley-Liss, New York

    Google Scholar 

  • Steen HB, Boyc E, Skarstad K, Bloom B, Godal T & Mustafa S (1982) Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry 2: 249–257

    Article  PubMed  CAS  Google Scholar 

  • Steen, HB, Lindmo, T & Stokke, T (1989) Differential light-scattering detection in an arc lamp-based flow cytometer. In: Yen A (Ed) Flow Cytometry: Advanced Research and Clinical Applications, Vol 1 (pp 64–80). CRC Press, Boca Raton Steen HB

    Google Scholar 

  • Skarstad K & Boye E (1990) DNA measurements of bacteria. Meth. Cell. Biol. 33: 519–526

    Article  Google Scholar 

  • Sychra JJ, Bartels PH, Bibbo M & Wied GL (1978) Dimension-ality reducing dislays in cell image analysis. Acta Cytol. 21: 747–752

    Google Scholar 

  • Tanke HJ (1990) In: Ormerod JM (Ed) Flow Cytometry: A Practical Approach (pp 187–207)

    Google Scholar 

  • van Dilla MA, Langlois RG, Pinkel D & Hadley WK (1983) Bacterial characterization by flow cytometry. Science 220: 620–622

    Article  PubMed  Google Scholar 

  • Waggoner AS (1990) Fluorescent probes for cytometry. In: Melamed MR, Lindmo T & Mendelsohn ML (Eds) Flow Cytometry and Sorting, 2nd edition, Ch 12 (pp 209–225). Wiley-Liss, New York

    Google Scholar 

  • Weber AE & San K-U (1990) Population dynamics of a recombinant culture in a chemostat under prolonged cultivation. Biotechnol. Bioeng. 36: 727–736

    Article  PubMed  CAS  Google Scholar 

  • Welch GR & Kell DB (1986) Not just catalysts: the bioenergetics of molecular machines. In: Welch GR (Ed) The Fluctuating Enzyme (pp 451–492). Wiley, New York

    Google Scholar 

  • Westerhoff HV, Hellingwerf KJ & van Dam K (1983) Efficiency of microbial growth is low, but optimal for maximum growth rate. Proc. Natl. Acad. Sci. 80: 305–9

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Tsong TS, Chock PB, Chen Y & Astumian RD (1986) How enzymes can capture and transmit free energy from an oscillating electric field. Proc. Natl. Acad. Sci. 83: 4734–4738

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV & van Dam K (1987) Thermodynamics and Control of Biological Free Energy Transduction. Elsevier, Amsterdam

    Google Scholar 

  • Williams RJ (1956) Biochemical Individuality. Wiley, New York

    Google Scholar 

  • Wittrup KD & Bailey JE (1988) A single-cell assay of β-galactosidase activity in Saccharomyces cerevisiae. Cytometry 9: 394–404

    Article  PubMed  CAS  Google Scholar 

  • Wittrup KD, Mann MB, Fenton DM, Tsai LB & Bailey JE (1988) Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Bio/Teehnology 6: 423–426

    Article  CAS  Google Scholar 

  • Wolpert DM & Miall RC (1990) Detecting chaos with neural networks. Proc. R. Soc B. 242: 82–86

    Article  Google Scholar 

  • Zychlinski E & Matin A (1983) Effect of starvation on cytoplasmic pH, protonmotive force and viability of an acidophilic bacterium Thiobacillus acidophilus. J. Bacteriol. 153: 371374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kell, D.B., Ryder, H.M., Kaprelyants, A.S., Westerhoff, H.V. (1992). Quantifying heterogeneity: flow cytometry of bacterial cultures. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics