Skip to main content

Oligotrophy

Fast and Famine Existence

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 5))

Abstract

According to A. Koch’s interpretation (Koch, 1971), Escherichia coli has evolved a strategy for surviving a “feast and famine” existence. Oligotrophic bacteria, in contrast, are conceived of as those never invited to a feast; their properties should include microbial adaptations to uninterrupted nutrient limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagi, Y., Taga, N., and Simidu, U., 1977, Isolation and distribution of oligotrophic marine bacteria, Can. J. Microbiol. 23:981–987.

    Article  Google Scholar 

  • Boylen, C. W., 1973, Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation, J. Bacteriol. 113:33–37.

    PubMed  CAS  Google Scholar 

  • Boylen, C. W., and Ensign, J. C., 1970, Intracellular substrates for endogenous metabolism during long-term survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:578–587.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A. Potrikus, C. J., Pfennig, N., and Ensign, J. C., 1978, Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum, J. Bacteriol. 134:381–388.

    PubMed  CAS  Google Scholar 

  • Bulion, W. W., 1977, Extracellular production of phytoplankton, Usp. Sovrem. Biol. 84:294304 (in Russian).

    Google Scholar 

  • Carlucci, A. F., and Shimp, S. L., 1974, Isolation and growth of a marine bacterium in low concentration of substrate, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 363–367, University Park Press, Baltimore.

    Google Scholar 

  • Dawes, E. A., 1976, Endogenous metabolism and the survival of starved prokaryotes, Symp. Soc. Gen. Microbiol. 26:19–53.

    CAS  Google Scholar 

  • Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers in micro-organisms, Adv. Microbial Physiol. 10:135–266.

    Article  CAS  Google Scholar 

  • Dills, S. S., Apperson, H., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44:385–418.

    PubMed  CAS  Google Scholar 

  • Dommergues, Y. R., Belser, L. W., and Schmidt, E. L., 1978, Limiting factors for microbial growth and activity in soil, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 49–104, Plenum Press, New York.

    Chapter  Google Scholar 

  • Ely, B., Amarasinghe, A. B. C., and Bender, R. A., 1978, Ammonia assimilation and glutamate formation in Caulobacter crescentus, J. Bacteriol. 133:225–230.

    PubMed  CAS  Google Scholar 

  • Ensign, J. C., 1970, Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:569–577.

    PubMed  CAS  Google Scholar 

  • Ensign, J. C., and Wolfe, R. S., 1964, Nutritional control of morphogenesis in Arthrobacter crystallopoietes, J. Bacteriol. 87:924–932.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1978, The biology of oxygen radicals, Science 201:875–880.

    Article  PubMed  CAS  Google Scholar 

  • Gray, T. R. G., and Williams, S. T., 1971, Microbial productivity in soil, Symp. Soc. Gen. Microbiol. 21:256–286.

    Google Scholar 

  • Grula, E. A., and Hartsell, S. E., 1954, Intracyellular structures in Caulobacter vibrioides, J. Bacteriol. 68:498–504.

    PubMed  CAS  Google Scholar 

  • Haars, E. G., and Schmidt, J. M., 1974, Stalk formation and its inhibition in Caulobacter crescentus, J. Bacteriol. 120:1409–1416.

    PubMed  CAS  Google Scholar 

  • Hamilton, R. D., Morgan, K. M., and Strickland, J. D. H., 1966, The glucose uptake kinetics of some marine bacteria, Can. J. Microbiol. 12:995–1003.

    Article  PubMed  CAS  Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30:772–794.

    PubMed  CAS  Google Scholar 

  • Hirsch, P., 1979, Life under conditions of low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 357–372, Dahlem Conference Life Sciences Research Report 13, Berlin.

    Google Scholar 

  • Hood, D. W. (ed.), 1970, Organic Matter in Natural Waters, Institute of Marine Science, Alaska.

    Google Scholar 

  • Hueting, S., deLange, T., and Tempest, D. W., 1979, Energy requirement for maintenance of the transmembrane potassium gradient inKlebsiella aerogenes NCTC418: A continuous culture study, Arch. Microbiol. 123:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., 1963, Bacterial growth at low population densities (II),Nature (London) 197:1322.

    Article  Google Scholar 

  • Jannasch, H. W., 1965, Eine Notiz über die Anreicherung von Mikroorganismen in Chemostaten, in: Anreicherungskultur und Mutantenauslesen (H. G. Schlegel, ed.), Suppl. 1 to Zentralbl. Bakteriol., I. Abt., pp. 498–502.

    Google Scholar 

  • Jannasch, H. W., 1967a, Enrichment of aquatic bacteria in continuous culture, Arch. Mikrobiol. 59:165–173.

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., 1967b, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.

    Article  CAS  Google Scholar 

  • Jannasch, H. W., 1969, Estimation of bacterial growth rates in natural waters, J. Bacteriol. 99:156–160.

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., and Jones, G. E., 1959, Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Oceanogr. 4:128–139.

    Article  Google Scholar 

  • Jannasch, H. W., and Mateles, R. I., 1974, Experimental bacterial ecology studied in continuous culture, Adv. Microbial Physiol. 11:165–212.

    Article  Google Scholar 

  • Jordan, T. L., Porter, J. S., and Pate, J. L., 1974, Isolation and characterization of prosthecae of Asticcacaulis biprosthecum, Arch. Mikrobiol. 96:1–16.

    CAS  Google Scholar 

  • Keddie, R. M., 1974, Arthrobacter, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 618–625, Williams & Wilkins Company, Baltimore.

    Google Scholar 

  • Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microbial Physiol. 6:147–217.

    Article  CAS  Google Scholar 

  • Krulwich, T. A., and Ensign, J. C., 1969, Alteration of glucose metabolism of Arthrobacter crystallopoietes by compounds which induce sphere to rod morphogenesis, J. Bacteriol. 97:526–534.

    PubMed  CAS  Google Scholar 

  • Kurn, N., Shapiro, L., and Agabian, N., 1977, Effect of carbon source and the role of cyclic adenosine 3′,5′-monophosphate on the Caulobacter cell cycle, J. Bacteriol. 131:951–959.

    PubMed  CAS  Google Scholar 

  • Kurn, N., Contreras, I., and Shapiro, L., 1978, Galactose catabolism in Caulobacter crescentus, J. Bacteriol. 135:517–520.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S. I., Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33:377–387.

    Article  PubMed  CAS  Google Scholar 

  • Larson, R. J., and Pate, J. L., 1975, Growth and morphology of Asticcacaulis biprosthecum in defined media, Arch. Microbiol. 106:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Larson, R. J., and Pate, J. L., 1976, Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum, J. Bacteriol. 126:282–293.

    PubMed  CAS  Google Scholar 

  • Luscombe, B. M., and Gray, T. R. G., 1974, Characteristics of arthrobacter grown in continuous culture, J. Gen. Microbiol. 82:213–222.

    Article  Google Scholar 

  • Mallory, L. M., Austin, B., and Colwell, R. R., 1977, Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment, Can. J. Microbiol. 23:733–750.

    Article  PubMed  CAS  Google Scholar 

  • Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 323–339, Dahlem Conference Life Sciences Research Report 13, Berlin.

    Google Scholar 

  • Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105:187–197.

    Article  PubMed  CAS  Google Scholar 

  • Matin, A., Veldhuis, C., Stegeman, V., and Veenhuis, M., 1979, Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation, J. Gen. Microbiol. 112:349–355.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microbial Physiol. 12:169246.

    Google Scholar 

  • Morris, J. G., 1976, Oxygen and the obligate anaerobe, J. Appl. Bacteriol. 40:229–244.

    Article  PubMed  CAS  Google Scholar 

  • Mulder, E. G., 1963, Arthrobacter, in: Principles and Applications in Aquatic Microbiology (H. Heukelekian and N. C. Dondero, eds.), pp. 254–279, John Wiley & Sons, New York.

    Google Scholar 

  • Nazly, N., Carter, I. S., and Knowles, C. J., 1980, Adenine nucleotide pools during starvation of Beneckea natriegens, J. Gen. Microbiol. 116:295–303.

    CAS  Google Scholar 

  • Nikaido, H., and Nakae, T., 1979, The outer membrane of gram-negative bacteria, Adv. Microbial Physiol. 20:163–250.

    Article  CAS  Google Scholar 

  • Pate, J. L., and Ordal, E. J., 1965, The fine structure of two unusual stalked bacteria, J. Cell Biol. 27:133–150.

    Article  PubMed  CAS  Google Scholar 

  • Pirt, S. J., 1972, Prospects and problems in continuous flow culture of microorganisms, J. Appl. Chem. Biotechnol. 22:55–64.

    Article  CAS  Google Scholar 

  • Poindexter, J. S., 1964, Biological properties and classification of the Caulobacter group, Bacteriol. Rev. 28:231–295.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1978, Selection for nonbuoyant morphological mutants of Caulobacter cres- centus, J. Bacteriol. 135:1141–1145.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1979, Morphological adaptation to low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environyments (M. Shilo, ed.), pp. 341–356, Dahlem Conference Life Sciences Research Report 13, Berlin.

    Google Scholar 

  • Poindexter, J. S., 1981, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45:123–179.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., and Cohen-Bazire, G., 1964, The fine structure of stalked bacteria belonging to the family Caulobacteraceae, J. Cell Biol. 23:587–597.

    Article  Google Scholar 

  • Porter, J. S., and Pate, J. L., 1975, Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport, J. Bacteriol. 122:976–986.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R., 1973, The viability of very slow-growing populations: A model for the natural ecosystem, Bull. Ecol. Res. Comm. (Stockholm) 17:287–292.

    Google Scholar 

  • Robinson, J. B., Salonius, P. O., and Chase, F. E., 1965, A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil, Can. J. Microbiol. 11:746–748.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. M., and Stanier, R. Y., 1966, The development of cellular stalks in bacteria,J. Cell Biol. 28:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Shedlarski, J. G., Jr., 1974, Glucose-6-phosphate dehydrogenase fromCaulobacter crescentus, Biochim. Biophys. Acta 358:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Staley, J. T., 1968, Prosthecomicrobium and Ancalomicrobium: New prosthecate freshwater bacteria, J. Bacteriol. 95:1921–1942.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., and Neijssel, O. M., 1978, Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 105–153, Plenum Press, New York.

    Chapter  Google Scholar 

  • Tempest, D. W., Herbert D., and Phipps, P. J., 1967, Studies on the growth ofAerobacter aero- genes at low dilution rates in a chemostat, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 240–261, H. M. Stationery Office, London.

    Google Scholar 

  • Whittenbury, R., and Dow, C. S., 1977, Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria, Bacteriol. Rev. 41:754–808

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Poindexter, J.S. (1981). Oligotrophy. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8306-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8306-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8308-0

  • Online ISBN: 978-1-4615-8306-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics