Skip to main content
Log in

Flow cytometric determinations of cellular substances in algae, bacteria, moulds and yeasts

  • Laboratory Methods
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The practical use of flow cytometry is shown in several microbial assays. Recent technical improvements in the optics and electronics of flow cytometric systems as well as in staining techniques permit the measurements of minute cellular components such as the cellular DNA and the protein content of bacteria, algae, moulds and yeasts. Single cell ingredients can be measured by this assay according to their specific stainability. The cell DNA was stained by propidium iodide while the cell protein was fluorochromed by fluorescein-iso-thiocyanate. The DNA synthesis of Saccharomyces cerevisiae and Saccharomyces pastorianus runs discontinuously while the protein content increases continuously during the vegetative growth. The different stages of DNA synthesis of yeast cells can be divided into two ‘gap’ phases, a synthesis and a mitosis period, corresponding to Howard and Pelc's model of DNA synthesis. Living and dead cells can be counted differentially after staining with Erythrosine B. The red fluorescence of the chlorophyll in algae can readily be used to determine the chlorophyll content of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkhan, E. 1972. DNS-Messung von Zellen aus Vaginalabstrichen. — Ärztl. Lab. 18: 77–79.

    Google Scholar 

  • Darzynkiewicz, Z., Traganos, F., Sharpless, T. and Melamed, M. D. 1975. Conformation of RNA in situ as studied by acridine orange staining and automated cytofluorometry. — Exptl. Cell Res. 95: 143–153.

    Google Scholar 

  • van Dilla, M. A., Trujillo, T. T., Mullaney, P. F. and Coulter, J. R. 1969. Cellmicrofluorometry: A method for rapid fluorescence measurement. — Science 163: 1213–1214.

    Google Scholar 

  • van Dilla, M. A., Gray, J. W., Carrano, A. V., Minkler, J. L. and Steinmetz, L. L. 1976. New directions for flow cytometry: Chromosome analysis. pp. 57–62. In W. Göhde, J. Schumann, Th. Bücher (eds), 2nd International Symposium Pulse-Cytophotometry. — European Press, Ghent, Belgium.

    Google Scholar 

  • Dittrich, W. und Göhde, W. 1969. Impulscytophotometrie bei Einzelzellen in Suspension. — Z. Naturforschg. 24b: 360–361.

    Google Scholar 

  • Duffus, J. H. 1971. The cell cycle in yeast. — J. Inst. Brew. 77: 500–508.

    Google Scholar 

  • Göhde, W. und Dittrich, W. 1970. Simultane Impulscytophotometrie des DNS-und Proteingehaltes von Tumorzellen. — Z. Anal. Chem. 252: 328–330.

    Google Scholar 

  • Gurr, E. 1971. (ed.). Anionic dyes, wholly acid. p. 197–198. In Synthetic dyes in biology, medicine and chemistry. — Academic Press, London & New York.

    Google Scholar 

  • Halvorson, H. O., Carter, B. L. A. and Tauro, P. 1971. Synthesis of enzymes during the cell cycle. — Adv. Microbiol. Physiol. 6: 47–106.

    Google Scholar 

  • Hartwell, L. H. 1974. Saccharomyces cerevisiae cell cycle. — Bacteriol. Rev. 38: 164–198.

    Google Scholar 

  • Howard, A. and Pelc, S. R. 1953. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. — Heredity 6: (Suppl.); 261–273.

    Google Scholar 

  • Hutter, K.-J., Göhde, W. und Emeis, C.-C. 1975. Untersuchungen über die DNS-, RNS- und Proteinsynthese ausgewählter Mikroorganismenpopulationen mit Hilfe der Zytophotometrie und der Impulscytophotometrie. I. Mitteilung: Methodische Untersuchungen über geeignete Färbeverfahren. — Chem. Mikrobiol. Technol. Lebensm. 4: 29–32.

    Google Scholar 

  • Hutter, K.-J. and Eipel, H. E. 1978a. DNA determination of yeast by flow cytometry. — FEMS Microbiol. Lett. 3: 35–38.

    Google Scholar 

  • Hutter, K.-J. and Eipel, H. E. 1978b. Protein distribution in population of baker's yeast. — Europ. J. Appl. Microbiol. Biotechnol. 5: 203–206.

    Google Scholar 

  • Hutter, K.-J., Eipel, H. E. and Hettwer, H. 1978a. Rapid determination of the purity of yeast cultures by flow cytometry. — Europ. J. Appl. Microbiol. Biotechnol. 5: 109–112.

    Google Scholar 

  • Hutter, K.-J., Görtz, Th., Oldiges, H. und Eipel, H. E. 1978b. Durchflußzytophotometrische Bestimmung des DNS-Gehaltes von Nectria coccinea Pers. ex Fr. bei Fungizideinwirkung. —Chemosphere 1: 51–58.

    Google Scholar 

  • Kamentsky, L. A., Melamed, M. R. and Derman, H. 1965. Spectrophotometer: New instrument for ultrarapid cell analysis. — Science 150: 630–631.

    Google Scholar 

  • Kaplow, L. S., Dauber, H. and Lerner, E. 1976. Assessment of monocyte esterase activity by flow cytophotometry. — J. Histochem. Cytochem. 24: 363.

    Google Scholar 

  • Kessler, E. und Czygan, F.-C. 1970. Physiologische und biochemische Beiträge zur Taxonomie der gattung Chlorella. IV. Verwertung organischer Stickstoffverbindungen. — Arch. Mikrobiol. 70: 211–216.

    Google Scholar 

  • Mitchison, J. W. 1971. (ed.). In Biology of the cell cycle. — Cambridge University Press.

  • Munch, R., Beck, G. und Manojlovic, N. 1971. Untersuchung über die Reaktion in vitro gezüchteter Zellen nach Inkubation in SiO2-Staub. — Beitr. Silikoseforschg. 23: 4.

    Google Scholar 

  • Ortho Instruments. 1977. Measurement of DNA in yeast cells. In Ortho Instr. (eds), Protocols No. 24. — Ortho Instr., Westwood, Mass., USA.

    Google Scholar 

  • Ortho Instruments. 1978. Determination of purity of yeast cultures. In Ortho Instr., (eds), Protocols No. 26.— Ortho Instr., Westwood, Mass., USA.

    Google Scholar 

  • Paau, A. S., Lee, D. and Cowles, J. R. 1977a. Comparison of nucleic acid content in populations of free-living and symbiotic Rhizobium meliloti by flow-microfluorometry. — J. Bacteriol. 129: 1156–1158.

    Google Scholar 

  • Paau, A. S., Cowles, J. R. and Oro, J. 1977b. Flow-microfluorometric analysis of escherichia coli, Rhizobium meliloti, and Rhizobium japonicum at different stages of the growth cycle. — Canad. J. Microbiol. 23: 1165–1169.

    Google Scholar 

  • Slater, M. L., Sharrow, S. O. and Gart, J. J. 1977. Cell cycle of Saccharomyces cerevisiae in populations growing at different stages. — Proc. Natl. Acad. Sci. USA. 74: 3850–3854.

    Google Scholar 

  • Smith, J. E. and Berry, D. R. 1974. The vegetative state. p. 106–151. In J. E. Smith and D. R. Berry (eds), An introduction to biochemistry of fungal development. — Academic Press, London & New York.

    Google Scholar 

  • Sprenger, E., Sandritter, W., Böhm, N., Schaden, M., Hilgarth, M. und Wagner, D. 1971. Durchflußfluoreszenzzytophotometrie: Ein Prescreening-Verfahren für die gynäkokogische Zytodiagnostik. — Beitr. Path. 143: 323–344.

    Google Scholar 

  • Strugger, S. 1949. (ed.). p. 89–92 In: Fluoreszenzmikroskopie und Mikrobiologie. — Verlag M. & H. Schaper, Hannover.

    Google Scholar 

  • Williamson, D. H. and Scopes, A. W. 1961. Protein synthesis and nitrogen uptake in synchronously dividing cultures of Saccharomyces cerevisiae. — J. Inst. Brew. 67: 39–42.

    Google Scholar 

  • Williamson, D. H. 1965. The timing of de oxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. — J. Cell. Biol. 25: 517–528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutter, K.J., Eipel, H.E. Flow cytometric determinations of cellular substances in algae, bacteria, moulds and yeasts. Antonie van Leeuwenhoek 44, 269–282 (1978). https://doi.org/10.1007/BF00394305

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394305

Keywords

Navigation