Skip to main content

Molecular Evolution and Taxonomy of the Cyanobacteria

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Molecular biology has provided new tools to decipher genetic information and can be used in attempts to reconstruct the evolution of organisms and improve their taxonomy. In the cyanobacteria, the use of molecular methods to study the genotypic relationships is underway, and initial results are promising. Different chemotaxonomic and macromolecular techniques are reviewed and their usefulness is evaluated. The most complete phylogenetic scheme of the cyanobacteria which is presently available is based on 16S rRNA sequence analysis. With this method, controversial taxonomic problems have been solved, such as the relationships among Pseudanabaena sp. strains or between the genera Arthrospira and Spirulina. In other cases, additional 16S rRNA sequences are necessary to obtain a clear picture. In addition to the cultivated strains, molecular ecology studies have contributed to the determination of new 16S rRNA sequence types, that have been retrieved directly from natural populations. The corresponding morphologies are presently unknown but may be revealed by the use of labeled probes annealing to specific 16S rRNA regions. For taxonomic purposes, it is necessary to find morphological features and simple testing methods which are congruent with the genotypic groupings. This information may be used to evaluate and revise existing classifications. The first stage in the development of such a polyphasic taxonomy is now underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aakermann T, Skulberg OM and Liaaen-Jensen S (1992) Further studies on the carotenoids of blue-green algae (cyanobacteria) — a comparative investigation of strains from the genera Oscillatoria and Spirulina. Biochem System Ecol 20: 761–769.

    Article  CAS  Google Scholar 

  • Aitken A (1988) Protein sequences as taxonomic probes of cyanobacteria. Meth Enzymol 167: 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Anagnostidis K and Komárek J (1985) Modern approach to the classification system of cyanophytes. 1-Introduction. Arch Hydrobiol Suppl 71, Algological Studies 38/39: 291–302.

    Google Scholar 

  • Anagnostidis K and Komárek J (1988) Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol Suppl 80, Algological Studies 50/53: 327–472.

    Google Scholar 

  • Anagnostidis K and Komárek J (1990) Modern approach to the classification system of cyanophytes. 5-Stigonematales. Arch Hydrobiol Suppl 86, Algological Studies 59: 1–73.

    Google Scholar 

  • Bornet E and Flahaut C (1886–1888) Révision des Nostocacées hétérocystées. Ann Sci Nat, Bot 7, Sér 3: 323–381; 4: 343-373; 5: 52-129; 7: 178-262.

    Google Scholar 

  • Britschgi TB and Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environm Microbiol 57: 1707–1713.

    CAS  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD and Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148: 107–127.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128: 835–844.

    CAS  Google Scholar 

  • Bullerjahn GS, Jensen TC, Sherman DM and Sherman LA (1990) Immunological characterization of the Prochlorothrix hollandica and Prochloron sp. chlorophyll a/b antenna proteins. FEMS Microbiol Lett 67: 99–106.

    Article  CAS  Google Scholar 

  • Castenholz RW (1969) The thermophilic cyanophytes of Iceland and the upper temperature limit. J Phycol 5: 360–368.

    Article  Google Scholar 

  • Castenholz RW (1989a) Subsection III, order Oscillatoriales. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1771–1780. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Castenholz RW (1989b) Subsection IV, order Nostocales. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1780–1793. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Castenholz RW (1989c) Subsection V, order Stigonematales. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp. 1794–1799. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28: 737–745.

    Article  Google Scholar 

  • Castenholz, RW and Waterbury JB (1989) Oxygenic Photo-synthetic Bacteria (sect. 19), Group I. Cyanobacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1710–1728. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Caudales R and Wells JM (1992) Differentiation of free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid composition. Int J Syst Bacteriol 42: 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Caudales R, Wells JM, and Antoine AD (1992) Cellular fatty acid composition of symbiotic cyanobacteria isolated from the aquatic fern Azolla. J Gen Microbiol 138: 1489–1494.

    Article  CAS  Google Scholar 

  • Damerval T, Castets A-M, Guglielmi G, Houmard J and Tandeau de Marsac N (1989) Occurrence and distribution of gas vesicle genes among cyanobacteria. J Bacteriol 171: 1445–1452.

    PubMed  CAS  Google Scholar 

  • DeLong E, Wickham GS and Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • De Rijk P, Neefs J-M, Van de Peer Y and De Wachter R (1992) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res (Suppl) 20: 2075–2089.

    Article  Google Scholar 

  • Desikachary (1973) Status of classical taxonomy. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 473–486. Blackwell Scientific, Oxford.

    Google Scholar 

  • Doolittle WF (1982) Molecular evolution. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 307–331. Blackwell Scientific, Oxford.

    Google Scholar 

  • Douglas SE and Carr N (1988) Examination of genetic relatedness of marine Synechococcus spp. by using restriction fragment length polymorphisms. Appl Environm Microbiol 54: 3071–3078.

    CAS  Google Scholar 

  • Douglas SE and Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Drouet F (1968). Revision of the Classification of the Oscillatoriaceae. Monograph Acad Natur Sci Philadelphia. Fulton Press, Lancaster, Pennsylvania.

    Google Scholar 

  • Eskew DL, Caetano-Anolles G, Bassam BJ and Gresshoff PM (1993) DNA amplification fingerprinting of the symbiosis. Plant Mol Biol 21: 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Farris JS (1988) Hennig86 (version 1.5) user’s manual. Privately published, 41 Admiral Street, Port Jefferson Station, New York, New York.

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fox GE, Wisotzkey JD and Jurtshuk P (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Franche C and Cohen-Bazire G (1987) Evolutionary divergence in the nifHDK gene region among nine symbiotic Anabaena azollae and between Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3: 159–178.

    Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch Microbiol 153: 344–351.

    Article  CAS  Google Scholar 

  • Gebhardt JS and Nierzwicki-Bauer S (1991) Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria. Appl Environm Microbiol 57: 2141–2146.

    CAS  Google Scholar 

  • Geitler L (1925) Synoptische Darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beih Bot Cbl 2: 163–324.

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz 14: 1–1196. Akad Verslagsges, Leipzig. Reprinted 1971, Johnson, New York.

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ and Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592.

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL and Field KG (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Golden SS, Nalty MS and Cho D-SC (1989) Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol 171: 24–29.

    PubMed  CAS  Google Scholar 

  • Gomont, M (1892) Monographie des Oscillariées. Ann Sci Nat, Bot 7, Sér 15: 263–368; 16: 91-264. Reprinted 1962, J. Cramer, Weinheim, Germany.

    Google Scholar 

  • Guglielmi G, Bryant DA and Cohen-Bazire G (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189.

    Article  CAS  Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1982) Structure et distribution des pores et des perforations de l’enveloppe de peptidoglycane chez quelques cyanobactéries. Protistologica 18: 151–165.

    Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1984a) Etude taxonomique d’un genre de cyanobactérie Oscillatoriacée: le genre Pseudanabaena Lauterborn. I. Etude ultrastructurale. Protistologica 20: 377–391.

    Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1984b) Etude taxonomique d’un genre de cyanobactérie Oscillatoriacée: le genre Pseudanabaena Lauterborn. II. Analyse de la composition moléculaire et de la structure des phycobilisomes. Protistologica 20: 393–413.

    CAS  Google Scholar 

  • Hall GC, Flick MB, Gherna RL and Jensen RA (1982) Biochemical diversity for biosynthesis of aromatic amino acids among the cyanobacteria. J Bacteriol 149: 65–78.

    PubMed  CAS  Google Scholar 

  • Hamana K and Matsuzaki S (1992) Polyamines as a chemo-taxonomic marker in bacterial systematics. CRC Crit Rev Microbiol 18: 261–283.

    Article  CAS  Google Scholar 

  • Hamana K, Miyagawa K and Matsuzaki S (1983) Occurrence of sym-homospermidine as the major polyamine in nitrogen-fixing cyanobacteria. Biochem Biophys Res Comm 112: 606–613.

    Article  PubMed  CAS  Google Scholar 

  • Healey FP (1968) The carotenoids of four blue-green algae. J Phycol 4: 126–129.

    Article  CAS  Google Scholar 

  • Hegewald E and Kneifel H (1983) Amine in Algen. IX. Das Vorkommen von Polyaminen in Blaualgen. Arch Hydrobiol Suppl 67, 1, Algological Studies 34: 19–28.

    CAS  Google Scholar 

  • Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY and Mandel M (1979a) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111: 63–71.

    Article  CAS  Google Scholar 

  • Herdman M, Janvier M, Rippka R and Stanier RY (1979b) Genome size of cyanobacteria. J Gen Microbiol 111: 73–85.

    Article  Google Scholar 

  • Hertzberg S, Liaaen-Jensen S and Siegelman HW (1971) The carotenoids of blue-green algae. Phytochem 10: 3121–3127.

    Article  CAS  Google Scholar 

  • Holton RW (1981) Some possible chemotaxonomic approaches to understanding cyanobacterial taxonomy and phylogeny. Ann New York Acad Sci 361: 397–408.

    Article  CAS  Google Scholar 

  • Holton RW, Stam WT and Boele-Bos SA (1990) DNA-DNA reassociation studies with DNA from Prochloron (prochlorophyta) samples of Indo-West Pacific origin. J Phycol 26: 358–361.

    Article  CAS  Google Scholar 

  • Ingram LO and Van Baalen C (1970) Characteristics of a stable, filamentous mutant of a coccoid blue-green alga. J Bacteriol 102: 784–789.

    PubMed  CAS  Google Scholar 

  • Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109: 827–834.

    PubMed  CAS  Google Scholar 

  • Kenyon CN, Rippka R and Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83: 216–236.

    Article  PubMed  CAS  Google Scholar 

  • Klein S, Chapman DJ and Garber ED (1973) Chemotaxonomy of the Oscillatoria-Phormidium complex. Biochem Syst 1: 173–177.

    Article  CAS  Google Scholar 

  • Komárek J (1970) Generic identity of the ‘Anacystis nidulans’ strain Kratz-Allen/Bloom 625 with Synechococcus Näg. 1849. Arch Protistenk 112: 343–364.

    Google Scholar 

  • Komárek J and Anagnostidis K (1986) Modern approach to the classification system of cyanophytes. 2-Chroococcales. Arch Hydrobiol, Suppl 73, Algological Studies 43: 157–226.

    Google Scholar 

  • Komárek J and Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4-Nostocales. Arch Hydrobiol, Suppl 823, Algological Studies 56: 247–345.

    Google Scholar 

  • Kumano M, Tomioka N and Sugiura M (1983) The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans. Gene 24: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31: 139–147.

    Article  Google Scholar 

  • Ladha JK and Watanabe I (1982) Antigenic similarity among Anabaena azollae separated from different species of Azolla. Biochem Biophys Res Comm 109: 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML and Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955–6959.

    Article  PubMed  CAS  Google Scholar 

  • Ligon PJB, Meyer KG, Martin JA and Curtis SE (1991). Nucleotide sequence of a 16S rRNA gene from Anabaena sp. strain PCC 7120. Nucl Acids Res 19: 4553.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad P, Haselkorn R, Bergman B and Nierzwicki-Bauer SA (1989) Comparison of DNA restriction fragment length polymorphisms of Nostoc strains in and from cycads. Arch Microbiol 152: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ, Penny D, Hendy HD, Howe CS, Beanland TJ and Larkum AWD (1992) Controversy on chloroplast origins. FEBS Lett 301: 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Masui R, Wada K, Matsubara H and Rogers LJ (1988) Properties and amino acid sequence of the ferredoxin from the unicellular cyanobacterium Synechococcus 6307. Phytochem 27: 2821–2826.

    Article  CAS  Google Scholar 

  • Mazel D, Houmard J, Castets AM and Tandeau de Marsac N (1990) Highly repetitive DNA sequences in cyanobacterial genomes. J Bacteriol 172: 2755–2761.

    PubMed  CAS  Google Scholar 

  • Mazel D, Bernard C, Schwarz R, Castets AM, Houmard J and Tandeau de Marsac N (1991) Characterization of two insertion sequences, IS701 and IS702, from the cyanobacterium Calothrix species PCC 7601. Mol Microbiol 5: 2165–2170.

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Joseph CM and Haselkorn R (1988) Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol 150: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Meffert, M-E (1989) Planktic unsheathed filaments (Cyano-phyceae) with polar and central gas vacuoles. II. Biology, population dynamics and biotopes of Limnothrix redekei (Van Goor) Meffert. Arch Hydrobiol 116: 257–282.

    Google Scholar 

  • Merritt MV, Rosenstein SP, Loh C, Hsui-sui Chou R. and Allen MM (1991) A comparison of the major lipid classes and fatty acid composition of marine unicellular cyanobacteria with freshwater species. Arch Microbiol 155: 107–113.

    Article  CAS  Google Scholar 

  • Meyer TE, Cusanovich MA and Kamen MD (1986) Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc Natl Acad Sci USA 83: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfennig N, Stackebrandt E and Zavarzin GA (1990) Report of the ad hoc committee on approaches to taxonomy within the proteobacteria. Int J Syst Bacteriol 40: 213–215.

    Article  Google Scholar 

  • Nelissen B, Wilmotte A, De Baere R, Haes F, Van de Peer Y, Neefs J-M and De Wachter, R (1992) Phylogenetic study of cyanobacteria on the basis of 16S ribosomal RNA sequences. Belg J Bot 125: 210–213.

    Google Scholar 

  • Nichols JM, Foulds IJ, Crouch DH and Carr NG (1982) The diversity of cyanobacterial genomes with respect to ribosomal RNA cistrons. J Gen Microbiol 128: 2739–2746.

    CAS  Google Scholar 

  • Noller HF, Stern S, Moazed D, Powers T, Svensson P and Changchien L-M (1987) Studies on the architecture and function of 16S rRNA. Cold Spring Harbor Symp Quant Biol 52: 695–708.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Plant Mol Biol Rep 4: 148–175.

    Article  CAS  Google Scholar 

  • Perry GJ, Gillan FT and Johns RB (1978) Lipid composition of a prochlorophyte. J Phycol 14: 369–371.

    Article  CAS  Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Croft L, Rolfe BG and Gunning BES (1990) DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to free-living Anabaena strains. Appl Environm Microbiol 56: 1263–1270.

    CAS  Google Scholar 

  • Plazinski J, Croft L, Taylor R, Zheng Q, Rolfe BG and Gunning BES (1991). Indigenous plasmids in Anabaena azollae: their taxonomic distribution and existence of regions of homology with symbiotic genes of Rhizobium. Can J Microbiol 37: 171–181.

    Article  CAS  Google Scholar 

  • Rippka R and Herdman M (1992) Pasteur Culture Collection of Cyanobacteria. Catalogue and Taxonomic Handbook. Vol. I: Catalogue of Strains, 103 pp. Institut Pasteur, Paris.

    Google Scholar 

  • Rippka R, Waterbury JB and Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436.

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61.

    Article  Google Scholar 

  • Rossau R, Michielsen A, Jannes G, Duhamel M., Kersters K and van Heuverswijn H (1992) DNA probes for Bordetella species and a colorimetric reverse hybridization assay for the detection of Bordetella pertussis. Molec Cell Probes 6: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N and Imanishi T (1989) Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol 6: 514–525.

    CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sallal AK, Nimer NA and Radwan SS (1990) Lipid and fatty acid composition of freshwater cyanobacteria. J Gen Microbiol 136: 2043–2048.

    Article  CAS  Google Scholar 

  • Schenk HEA and Kuhfittig G (1983) Elektromorphe Phyco-chromoproteid-Muster: Eine Taxonomische Identifikationsmethode fur Cyanobakterien-Species. Biochem System Ecol 11: 163–174.

    Article  CAS  Google Scholar 

  • Schenk HEA, Hofer I and Metzner H (1973) Malat-Dehy-drogenase Isoenzymbanden als potentielles chemotax-onomisches Kriterium für Cyanophyceen-Species. Biochem System 1: 179–184.

    Article  CAS  Google Scholar 

  • Schleifer KH and Ludwig W (1989) Phylogenetic relationships among bacteria. In: Fernholm B, Bremer K and Jörnvall (eds) The Hierarchy of Life, pp 103–117. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Schleifer KH and Stackebrandt E (1983) Molecular systematics of prokaryotes. An Rev Microbiol 37: 143–187.

    Article  CAS  Google Scholar 

  • Schmidt TM, DeLong EF and Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371–4378.

    PubMed  CAS  Google Scholar 

  • Schopf JW and Packer BM (1987) Early archean (3.3-billion to 3.5-billion-years-old) microfossils from Warsanoona group, Australia. Science 237: 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW and Walter MR (1982) Origin and early evolution of cyanobacteria: the geological evidence. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 543–564. Blackwell Scientific, Oxford.

    Google Scholar 

  • Schwabe GH (1960) Ãœber den thermobionten Kosmopoliten Mastigocladus laminosus Cohn. Schweiz. Z Hydrol 22: 757–792.

    Google Scholar 

  • Stackebrandt E and Goodfellow M (1991) Introduction. In: Stackebrandt E and Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics, pp xix–xxix. Wiley, Chichester.

    Google Scholar 

  • Stackebrandt E, Niebel H and Söller R (1991) Expression of the chromosome-coded rRNA genes of Proteus vulgaris in Escherichia coli. J Gen Appl Microbiol 37: 141–146.

    Article  CAS  Google Scholar 

  • Stam WT (1980) Relationships between a number of filamentous blue-green algal strains (Cyanophyceae) revealed by DNADNA hybridization. Arch Hydrobiol, Suppl 56, Algological Studies 25: 351–374.

    Google Scholar 

  • Stam WT and Holleman HC (1975) The influence of different salinities on growth and morphological variability of a number of Phormidium strains (Cyanophyceae) in culture. Acta Neerl Bot 24: 379–390.

    Google Scholar 

  • Stam WT and Venema G (1975) The use of DNA-DNA hybridization for determination of the relationship between some blue-green algae (cyanophyceae). Acta Bot Neerl 26: 327–342.

    Google Scholar 

  • Stam WT, Boele-Bos SA and Stulp BK (1985) Genotypic relationships between Prochloron samples from different localities and hosts as determined by DNA-DNA reassociations. Arch Microbiol 142: 340–341.

    Article  CAS  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherna RL and Trüper HG (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28: 335–336.

    Article  Google Scholar 

  • Stuessy TF (1990) Plant Taxonomy. The Systematic Evaluation of Comparative Data. Columbia University Press, New York.

    Google Scholar 

  • Stulp BK and Stam WT (1984) Genotypic relationships between strains of Anabaena (Cyanophyceae) and their correlation with morphological affinities. Br Phycol J 19: 287–301.

    Article  Google Scholar 

  • Swofford DL and Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM and Moritz C (eds) Molecular Systematics, pp 411–501. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tandeau de Marsac N and Houmard J (1987) Advances in cyanobacterial molecular genetics. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 251–302. Elsevier, Amsterdam.

    Google Scholar 

  • Tomioka N and Sugiura M (1983) The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol Gen Genet 191: 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Tomioka N and Sugiura M (1984) Nucleotide sequence of the 16S-23S spacer region in the rrnA Operon from a blue-green alga, Anacystis nidulans. Mol Gen Genet 193: 427–430.

    Article  CAS  Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR and Pace NR (1989) The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. Nature 337: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Urbach E, Robertson DL and Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y and De Wachter R (1993) TREECON: A software package for the construction and drawing of evolutionary trees. Comp Appl Biosc 9: 177–182.

    PubMed  Google Scholar 

  • Vaneechoutte M, Rossau R, De Vos P, Gillis M, Janssens D, Paepe N, De Rouck A, Fiers T, Claeys G and Kersters K (1992) Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DN A-restriction analysis (ARDRA). FEMS Microbiol Lett 93: 227–234.

    Article  CAS  Google Scholar 

  • Versalovic J, Koeuth T and Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucl Acids Res 19: 6823–6831.

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Bateson MM, Weiler R and Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12: 219–286.

    Article  CAS  Google Scholar 

  • Waterbury JB (1989) Subsection II, order Pleurocapsales Geitler 1925, emend. Waterbury and Stanier 1978. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1746–1770. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Waterbury JB and Rippka R (1989) Subsection I, order Chroococcales Wettstein 1924, emend. Rippka et al., 1979. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1728–1746. Williams and Wilkins Co, Baltimore.

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandier O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP and Triiper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464.

    Article  Google Scholar 

  • Weller R, Walsh Weller J and Ward DM (1991). 16S rRNA sequences of uncultivated hot springs cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl Environm Microbiol 57: 1146–1151.

    CAS  Google Scholar 

  • Weller R, Bateson, MM, Heimbuch BK, Kopczynski ED and Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environm Microbiol 58: 3964–3969.

    CAS  Google Scholar 

  • Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 1–52. Plenum Press, New York.

    Chapter  Google Scholar 

  • Wilmotte A (1991) Taxonomic study of marine oscillatoriacean strains (cyanophyceae, cyanobacteria) with narrow trichomes. I. Morphological variability and autecological features. Arch Hydrobiol, Suppl 92, Algological Studies 64: 215–248.

    Google Scholar 

  • Wilmotte A and Golubić S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Arch Hydrobiol, Suppl 92, Algological Studies 64: 1–24.

    Google Scholar 

  • Wilmotte A and Stam WT (1984) Genetic relationships among cyanobacterial strains originally designated as ‘Anacystis nidulans’ and some other Synechococcus strains. J Gen Microbiol 130: 2737–2740.

    Google Scholar 

  • Wilmotte A, Turner S, Van de Peer Y and Pace NR (1992) Taxonomic study of marine oscillatoriacean strains (cyanobacteria) with narrow trichomes. II. Nucleotide sequence analysis of the 16S ribosomal RNA. J Phycol 28: 828–838.

    Article  CAS  Google Scholar 

  • Wilmotte A, Van Der Auwera G and De Wachter R (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC 7518, and phylogenetic analysis. FEBS Lett 317: 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Wood AM and Townsend D (1990) DNA polymorphism within the WH7803 serogroup of marine Synechococcus spp. (cyanobacteria). J Phycol 26: 576–585.

    Article  CAS  Google Scholar 

  • Zehr JP, Limberger RJ, Okhi K and Fujita Y (1990) Antiserum to nitrogenase generated from an amplified DNA fragment from natural populations of Trichodesmium sp. Appl Environ Microbiol 56: 3527–3531.

    PubMed  CAS  Google Scholar 

  • Zilinskas BA and Howell DA (1987) Immunological conservation of phycobilisome rod linker polypeptides. Plant Physiol 85: 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman WJ and Bergman B (1990) The Gunnera symbiosis: DNA restriction fragment length polymorphism and protein comparisons of Nostoc symbionts. Microb Ecol 19: 291–302.

    Article  CAS  Google Scholar 

  • Zimmerman WJ and Rosen BH (1992) Cyanobiont diversity within and among cycads of one field site. Can J Microbiol 38: 1324–1328.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E and Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8: 357–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilmotte, A. (1994). Molecular Evolution and Taxonomy of the Cyanobacteria. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics