Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA,volume 5))

  • 620 Accesses

Abstract

Jackson Inequality - An inequality estimating the rate of decrease of the best approximation error of a function by trigonometric or algebraic polynomials in dependence on its differentiability and finite-difference properties. Let ƒ be a 2л-periodic continuous function on the real axis, let En(f) be the best uniform approximation error of ƒ by trigonometric polynomials Tn of degree n,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson, D.: Ueber die Genauigkeit der Annäherung stetiger Funktionen durch game rationale Funktionen gegebenen Grades und trigonometrische Summen gegebenen Ordnung, Göttingen, 1911. Thesis.

    Google Scholar 

  2. Nikol’skiǐ, S.M.: Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).

    Google Scholar 

  3. Bernshteǐn, S.N.: ‘On the best approximation of continuous functions by polynomials of a given degree’, in Collected works, Vol. 1, Moscow, 1952, pp 11–104 (in Russian).

    Google Scholar 

  4. Korneǐchuk, N.R: Extremal problems in approximation theory, Moscow, 1976 (in Russian).

    Google Scholar 

  5. Lorentz, G.G.: Approximation of functions, Holt, Rinehart & Winston, 1966.

    MATH  Google Scholar 

  6. Cheney, E.W.: Introduction to approximation theory, McGraw-Hill, 1966, Chapt. 4.

    MATH  Google Scholar 

  7. Meinardus, G.: Approximation von Funktionen und ihre numerische Behandlung, Springer, 1964, Chapt. 1, §5.

    MATH  Google Scholar 

  8. Rivlin, Th.J.: An introduction to the approximation of functions, Dover, reprint, 1981.

    MATH  Google Scholar 

  9. Jackson, D.: The theory of approximation, Amer. Math. Soc., 1930.

    MATH  Google Scholar 

  10. Natanson, I.P.: Constructive function theory, 1–3, F. Ungar, 1964–1965 (translated from the Russian).

    Google Scholar 

  11. Jacobi, C.G.J.: ‘Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi’, J. Reine Angew. Math. 60 (1862), 1–181.

    Article  MATH  Google Scholar 

  12. Mayer, A.: ‘Ueber die Weiler’sche Integrationsmethode der partiellen Differentialgleichungen erster Ordnung’, Math. Ann. 9 (1876), 347–370.

    Article  Google Scholar 

  13. Gyunter, N.M.: Integration of first-order partial differential equations, Moscow-Lenigrad, 1934 (in Russian).

    Google Scholar 

  14. Stepanov, V.V.: Lehrbuch der Differentialgleichungen, Deutsch. Verlag Wissenschaft, 1956 (translated from the Russian).

    MATH  Google Scholar 

  15. Bliss, Ga: Lectures on the calculus of variations, Chicago Univ. Press, 1947.

    MATH  Google Scholar 

  16. Lavrent’ev, M.A. and Lyusternik, La.: A course in variational calculus, Moscow-Leningrad, 1950 (in Russian).

    Google Scholar 

  17. Elsgolc, L.E. [L.E. El’sgolts]: Calculus of variations, Per-gamon, 1961 (translated from the Russian).

    MATH  Google Scholar 

  18. Bryson, A.E. and Ho, Y.-C.: Applied optimal control, Ginn, 1969.

    Google Scholar 

  19. Kelley, H.J., Kopp, R.E. and Moyer, H.G.: ‘Singular extremals’, in G. Leitmann (ed.): Topics of optimization, Acad. Press, 1967, p. Chapt. 3.

    Google Scholar 

  20. Akhiezer, N.I.: The calculus of variations, Blaisdell, 1962 (translated from the Russian).

    Google Scholar 

  21. Cbsari, L.: Optimization: theory and applications: problems with ordinary differential equations, Springer, 1983.

    Google Scholar 

  22. Jacobi, C.G.J.: Fundamenta nova theoriae functionum ellipti- carum, Königsberg, 1829.

    Google Scholar 

  23. Jacobi, C.G.J.: ‘Fundamenta nova theoriae functionum ellipti- carum’, in Gesammelte Werke, Vol 1, Chelsea, reprint, 1969, pp. 49–239.

    Google Scholar 

  24. Akhiezer, N.I.: Elements of the theory of elliptic functions, Moscow, 1970 (in Russian).

    Google Scholar 

  25. Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 1, Springer, 1964, p. Chapt.8.

    Google Scholar 

  26. Whittaker, E.T. and Watson, G.N.: A course of modern analysis, Cambridge Univ. Press, 1952.

    Google Scholar 

  27. Enneper, A.: Elliptische Funktionen. Theorie und Geschichte, Halle, 1890.

    Google Scholar 

  28. Tannery, J. and Molk, J.: Eléments de la théorie desfonctions elliptiques, 1–2, Chelsea, reprint, 1972.

    Google Scholar 

  29. Zhuravskiǐ, A.M.: Manual on elliptic functions, Moscow-Leningrad, 1941 (in Russian).

    Google Scholar 

  30. Jahnke, E., Emde, F. and Lösch, F.: Tafebi höheren Funk- tionen, Teubner, 1966.

    Google Scholar 

  31. Mumford, D.: Tata lectures on Thetat 1–2, Birkhäuser, 1983–1984.

    Google Scholar 

  32. Weil, A.: Elliptic functions according to Eisenstein and Kronecker, Springer, 1976.

    MATH  Google Scholar 

  33. Bowman, F.: Introduction to elliptic functions with applications, Dover, reprint, 1961.

    MATH  Google Scholar 

  34. Igusa, J.-I: Theta functions, Springer, 1972.

    MATH  Google Scholar 

  35. Hancock, H.: Theory of elliptic functions, Dover, reprint, 1958.

    MATH  Google Scholar 

  36. Jacobi, C.G.J.: ‘De integratione aequationis differentialis (A +A′x +A″y)(x¶y -y¶x)-(B+B′x +B″y)¶y + (C + C′x + C″y)¶x=0’. J. Reine Angew. Moth. 24 (1842), 1–4.

    Google Scholar 

  37. Stbpanow, W. [V.V. Stepanov]: Lehrbuch der Differentialgleichungen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).

    Google Scholar 

  38. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen, 1. Gewöhnliche Differentialgleichungen, Chelsea, reprint 1947.

    Google Scholar 

  39. Ince, E.L.: Ordinary differential equations, Dover, reprint, 1956.

    Google Scholar 

  40. Chebotarev, N.G.: The theory of algebraic functions, Moscow-Leningrad, 1948 (in Russian).

    Google Scholar 

  41. Springer, G.: Introduction to Riemann surfaces, Addison-Wesley, 1957.

    MATH  Google Scholar 

  42. Clebsch, A. and Gordan, P.: Theorie der Abelschen Funktionen, Teubner, 1866.

    Google Scholar 

  43. Conforto, F.: Abelsche Funktionen und algebraische Geometrie, Springer, 1956.

    MATH  Google Scholar 

  44. Mumford, D.: ‘Structure of moduli spaces of curves and Abelian varieties’, in Actès Congress internet. mathématiciens Nice, 1970, Vol 1, Gauthier-Villars, 1971, pp. 457–465.

    Google Scholar 

  45. Siegel, C.L.: Topics in complex function theory, 2, Intersci-ence, 1971.

    Google Scholar 

  46. Mumford, D.: Tata lectures on Theta, 1, Birkhäuser, 1983.

    Google Scholar 

  47. Gantmakher, F.R. and Kreǐn, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems, Dept. Com- merce USA. Joint Publ. Service, 1961 (translated from the Russian).

    Google Scholar 

  48. Gantmakher, F.R.: The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).

    Google Scholar 

  49. Collatz, L.: ‘Ueber die Konvergentzkriterien bei Itera-tionsverfahren für lineare Gleichungssysteme’, Math. Z. 53 (1950), 149–161.

    Article  MathSciNet  MATH  Google Scholar 

  50. Hageman, L.A. and Young, D.M.: Applied iterative methods, Acad. Press, 1981.

    MATH  Google Scholar 

  51. Jacobi, C.G.J.: ‘Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadraten vorkommenden lineare Gleichungen’. Astr. Nachr. 22, no. 523 (1845), 297–306.

    Article  Google Scholar 

  52. Ortéga, J.M.: Numerical analysis, Acad. Press, 1972.

    MATH  Google Scholar 

  53. Varga, R.S.: ‘A comparison of the successive over-relaxation method and semi-iterative methods using Che-byshev polynomials’, Siam J. Appl. Math. 5 (1962), 39–47.

    Google Scholar 

  54. Young, D.M.: Iterative solution of large linear systems, Acad. Press, 1971.

    MATH  Google Scholar 

  55. Fröberg, C.E.: Introduction to numerical analysis, theory and applications, Benjamin/Cummings, 1985.

    Google Scholar 

  56. Golub, G.H. and Loan, C.F. van: Matrix computations, North Oxford Acad., 1983.

    MATH  Google Scholar 

  57. Jacobi, C.G.J.: ‘Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe’, J. Reine Angew. Math. 56 (1859), 149–165.

    Article  MATH  Google Scholar 

  58. Suettn, P.K.: Classical orthogonal polynomials, Moscow, 1978 (in Russian).

    Google Scholar 

  59. Askey, R.: Orthogonal polynomials and special functions, Reg. Conf. Ser. Appl. Math., 21, SIAM, 1975.

    Book  Google Scholar 

  60. Braaksma, B.L.J, and Meulenbeld, B.: ‘Jacobi polynomials as spherical harmonics’, Nederl. Akad. Wetensch. Proc. Ser.A 71 (1968), 384–389.

    MathSciNet  MATH  Google Scholar 

  61. Helgason, S.: Groups and geometric analysis, Acad. Press, 1984.

    MATH  Google Scholar 

  62. Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.

    MATH  Google Scholar 

  63. Vilenkin, N.Ya.: Special functions and the theory of group representations, Amer. Math. Soc., 1968 (translated from the Russian).

    MATH  Google Scholar 

  64. Jacobi, C.G.J.: Vorlesungen über Dynomik, G. Reimer, 1884.

    Google Scholar 

  65. Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).

    Google Scholar 

  66. Jacobi, C.G.J.: Gesammelte Werke, 1–7, Reimer, 1881–1891.

    Google Scholar 

  67. Dirichlet, P.G.: Vorlesungen über Zahlentheorie, Vieweg, 1894.

    MATH  Google Scholar 

  68. Bachmann, P.: Niedere Zahlentheorie, 1–2, Teubner, 1902- 1910.

    Google Scholar 

  69. Zagier, D.B.: Zetafunktionen und quadratische Körper, Springer, 1981.

    MATH  Google Scholar 

  70. Scott, EJ.: ‘Jacobi transforms’, Quart. J. Math. 4, no. 13 (1953), 36–40.

    Article  MATH  Google Scholar 

  71. Ditkin, VA. and Prundnikov, A.P.: ‘Integral transforms’, Progress in Math. (1969), 1–85. (Itogi Nauk. Mat. Anal 1966 (1967))

    Google Scholar 

  72. Zemanian, A.G.: Generalized integral transformations, Intersci- ence, 1968.

    MATH  Google Scholar 

  73. Jacobi, C.GJ.: ‘Considerationes generates de transcendentibus abelianis’, J. Reine Angew. Math. 9 (1832), 349–403.

    Google Scholar 

  74. Jacobi, C.G.J.: ‘De functionibus duarum variabilium quadru- pliciter periodicis, quibus theoria transcendentium abelianarum innititur’, J. Reine Angew. Math. 13 (1835), 55–78.

    Article  MATH  Google Scholar 

  75. Andreotti, A. and Mayer, A.: ‘On period relations for abelian integrals on algebraic curves’, Ann. Scu. Norm. Sup. Pisa 21 (1967), 189–238.

    MathSciNet  MATH  Google Scholar 

  76. Griffiths, P.A.: An introduction to the theory of special divisors on algebraic curves, Amer. Math. Soc., 1980.

    MATH  Google Scholar 

  77. Mumford, D.: Curves and their Jacobians, Michigan Univ. Press, 1978.

    Google Scholar 

  78. Griffiths, P.A. and Harris, J.: Principles of algebraic geometry, Wiley, 1978.

    MATH  Google Scholar 

  79. Serre, J.-P.: Groupes algébrique et corps des classes, Hermann, 1959.

    Google Scholar 

  80. Weil, A.: Variétés abéliennes et courbes algébriques, Hermann, 1971.

    MATH  Google Scholar 

  81. Lang, S.: Abelian varieties, Springer, 1981.

    Google Scholar 

  82. Chow, W.L.: ‘The Jacobian variety of an algebraic curve’, Amer. J. Math. 76 (1954), 453–476.

    Article  MathSciNet  MATH  Google Scholar 

  83. Arbarello, E., Cornalba, M., Griffiths, P.A. and Harris, J.: Geometry of algebraic curves, 1, Springer, 1985.

    Google Scholar 

  84. Il’in, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).

    Google Scholar 

  85. Kudryavtsev, L.D.: Mathematical analysis, Moscow, 1973 (in Russian).

    Google Scholar 

  86. Nlkol’skiǐ, S.M.: A course of mathematical analysis, 2, Mir, 1977 (translated from the Russian).

    Google Scholar 

  87. Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.

    MATH  Google Scholar 

  88. Spivak, M.: Calculus on manifolds, Benjamin/Cummings, 1965.

    MATH  Google Scholar 

  89. Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1953.

    MATH  Google Scholar 

  90. McConnell, J.C. and Robson, J.C.: Noncommutative Noeth-erian rings, Wiley, 1987.

    Google Scholar 

  91. Herstein, I.N.: Noncommutative rings, Math. Assoc. Amer., 1968.

    MATH  Google Scholar 

  92. Bourbaki, N.: Elements of mathematics. Commutative algebra, Addison-Wesley, 1972 (translated from the French).

    MATH  Google Scholar 

  93. Procesu, C: Rings with polynomial identities, M. Dekker, 1973.

    Google Scholar 

  94. McConnell, J.C. and Robson, J.C.: Noncommutative Noeth-erian rings, Wiley, 1987.

    Google Scholar 

  95. Schläfli, L.: ‘Nota alia Memoria del signor Beltrami “Sugh spazi di curvatura costante”, Ann. Mat. Pura. Appl. Ser. 2 5 (1873), 178–193.

    Google Scholar 

  96. Janet, M.: ‘Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien’, Ann. Soc. Polon. Math. 5 (1926), 38–43.

    Google Scholar 

  97. Friedman, A.: ‘Isometric imbedding of Riemannian manifolds into Euclidean spaces’, Rev. Modern Physics 77 (1965), 201–203.

    Article  Google Scholar 

  98. Cartan, E.: ‘Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen’, Ann. Soc. Polon. Math. 6(1927), 1–7.

    Google Scholar 

  99. Bursttn, C.: Mat. Sb. 38 (1931), 74–93.

    Google Scholar 

  100. Spivak, M.: A comprehensive introduction to differential geometry, 5, Publish or Perish, 1975.

    Google Scholar 

  101. Jenkins, J. A.: Univalent Junctions and conformal mapping, Springer, 1958.

    Google Scholar 

  102. Jenkins, J.A.: ‘An extension of the general coefficient theorem’, Trans. Amer. Math. Soc. 95, no. 3 (1960), 387–407.

    Article  MathSciNet  MATH  Google Scholar 

  103. Jenkins, J.A: ‘The general coefficient theorem and certain applications’, Bull. Amer. Math. Soc. 68, no. 1 (1962), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  104. Jenkins, J.A.: ‘Some area theorems and a special coefficient theorem’, Illinois J. Math. 8, no. 1 (1964), 80–99.

    MathSciNet  MATH  Google Scholar 

  105. Tamrazov, P.M.: ‘On the general coefficient theorem’, Math. USSR Sb. 1 (1967), 49–59. (Mat. Sb. 72, no. 1 (1967), 59–71)

    Article  MATH  Google Scholar 

  106. Jensen, J.L.: ‘Sur un nouvel et important théorème de la théorie des fonctions’, Acta Math. 22 (1899), 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  107. Nevanltnna, R.: Analytic Junctions, Springer, 1970 (translated from the German).

    Google Scholar 

  108. Dzhrbashyan, M.M.: Integral transforms and representations of functions in a complex domain, Moscow, 1966 (in Russian).

    Google Scholar 

  109. Prjvalov, I.I.: Subharmonic Junctions, Moscow-Leningrad,1937 (in Russian).

    Google Scholar 

  110. Vladimirov, V.S.: Methods ojthe theory of Junctions of several complex variables, M.I.T, 1966 (translated from the Russian).

    Google Scholar 

  111. Gunning, R.C. and Rossi, H.: Analytic Junctions of several complex variables, Prentice-Hall, 1965.

    Google Scholar 

  112. Griffiths, P. and King, J.: ‘Nevanlinna theory and holo- morphic mappings between algebraic manifolds’, Acta Math. 130(1973), 145–220.

    Article  MathSciNet  MATH  Google Scholar 

  113. Griffith, P.A.: Entire hoiomorphic mappings in one and several complex variables, Princeton Univ. Press, 1976.

    Google Scholar 

  114. Lelong, P. and Gruman, L.: Entire functions of several complex variables, Springer, 1986.

    Book  MATH  Google Scholar 

  115. Levin, B.Ya.: Distribution of zeros of entire functions, Amer. Math. Soc., 1980 (translated from the Russian).

    Google Scholar 

  116. Ronkin, L.I.: Introduction to the theory of entire functions of several variables, Amer. Math. Soc., 1974 (translated from the Russian).

    MATH  Google Scholar 

  117. Hayman, W.K. and Kennedy, P.B.: Subharmonic functions, Acad. Press, 1976.

    MATH  Google Scholar 

  118. Hölder, O.: ‘Ueber einen Mittelwertsatz’, Göttinger Nachr. (1889), 38–47.

    Google Scholar 

  119. Jensen, J.L.: ‘Sur les fonctions convexes et les inégualités entre les valeurs moyennes’, Acta Math. 30 (1906), 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  120. Hardy, G.H., Littlewood, J.E. and Pólya, G.: Inequalities, Cambridge Univ. Press, 1934.

    Google Scholar 

  121. Rudin, W.: Real and complex analysis, McGraw-Hill, 1978.

    Google Scholar 

  122. Bullen, P.S., Mitrinović, D.S. and Vasić, P.M.: Means and their inequalities, Reidel, 1988, p. 27ff.

    MATH  Google Scholar 

  123. Brocker, P. and Lander, L.: Differentiable germs and catastrophes, Cambridge Univ. Press, 1975.

    Google Scholar 

  124. Golubitsky, M. and Guillemin, W.: Stable mappings and their singularities, Springer, 1973.

    MATH  Google Scholar 

  125. Poston, T. and Stewart, I.: Catastrophe theory and its appli-cations, Pitman, 1978.

    Google Scholar 

  126. Joachimsthal, F.: ‘Demonstratio theorematum ad superficies curvas spectantium’, J. Reine Angew. Math. 30 (1846), 347–350.

    Article  MATH  Google Scholar 

  127. Darboux, G.: Lecons sur la theorie génerate des surfaces et ses applications géometriques du calcul infinitesimal, 1, Gauthier-Villars, 1887.

    Google Scholar 

  128. Lefschetz, S.: Topology, Chelsea, reprint, 1965, Sect. 47 (Chapt. II §8).

    Google Scholar 

  129. Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.

    MATH  Google Scholar 

  130. Maunder, C.R.F.: Algebraic topology, v. Nostrand Reinhold, 1970.

    MATH  Google Scholar 

  131. Prokhorov, Yu.V. and Rozanov, Yu.A.: Probability theory. Springer, 1969 (translated from the Russian).

    MATH  Google Scholar 

  132. Billingsley, P.: Probability and measure, Wiley, 1979.

    MATH  Google Scholar 

  133. Doob, J.L.: Stochastic processes, Wiley, 1953.

    MATH  Google Scholar 

  134. Jordan, P.: ‘Ueber VeraUgememenmgsmdgUchkeiten des For malismus der Qiiantenmechanik’, Nachr. Akad Wiss. Göttingen. Math. Phys. KL 7 41 (1933), 209–217.

    Google Scholar 

  135. Emch, G.G.: Algebraic methods in statistic mechanics and quantum field theory, Wiley, 1972.

    Google Scholar 

  136. Jacobson, N.: Structure and representations of Jordan algebras, Amer. Math. Soc., 1968.

    MATH  Google Scholar 

  137. McCrimmon, K.: The radical of a Jordan algebra’, Proc. Nat. Acad. Sci USA 62, no. 3 (1969), 671–678.

    Article  MathSciNet  MATH  Google Scholar 

  138. Slin’ko, A.M.: ‘On the Jacobson radical and absolute zero divisors of special Jordan algebras’, Algebra and Logic 11, no. 6 (1972), 396–402. (Algebra i Logika 11, no. 6 (1972), 711–724)

    Article  MATH  Google Scholar 

  139. Shirshov, A.I.: ‘On some non-associative null rings and algebraic algebras’, Mat. Sb. 41, no. 3 (1957), 381–394 (in Russian).

    MathSciNet  Google Scholar 

  140. Shestakov, LP.: ‘Certain classes of noncommutative Jordan rings’, Algebra and Logic 10, no. 4 (1971), 252–280. (Algebra i Logika 10, no. 4 (1971), 407–448)

    Article  MATH  Google Scholar 

  141. Schafer, R.D.: An introduction to nonassociative algebras, Acad. Press, 1966.

    MATH  Google Scholar 

  142. Gordon, S.R.: ‘An integral basis theorem for Jordan algebras’, J. of Algebra 24 (1973), 258–282.

    Article  MATH  Google Scholar 

  143. Schafer, R.D.: ‘Structure of genetic algebras’, Amer. J. Math.71 (1949), 121–135.

    Article  MathSciNet  MATH  Google Scholar 

  144. Koecher, M.: An elementary approach to bounded symmetric domains, Rice Univ., 1969.

    MATH  Google Scholar 

  145. Slin’ko, A.M., et al.: Jordan algebras, 1, Novosibirsk, 1976 (in Russian).

    Google Scholar 

  146. Kantor, I.L.: ‘Classification of irreducible transitively differential groups’, Soviet Math. Dokl. 5 (1964), 1404–1407. (Dokl. Akad. NaukSSSRISQ, no. 5 (1964), 1271–1274)

    MATH  Google Scholar 

  147. Kac, V.G.: ‘Classification of simple Z-graded Lie superalge-bras and simple Jordan superalgebras’, Comm. in Algebra 5, no. 13(1977), 1375–1400.

    Article  MATH  Google Scholar 

  148. Braun, H. and Koecher, M.: Jordan-algebren, Springer, 1966.

    MATH  Google Scholar 

  149. Springer, T.A.: Jordan algebras and algebraic groups, Springer, 1973.

    MATH  Google Scholar 

  150. Jordan, C: ‘Sur la serie de Fourier’, C.R. Acad Set Paris 92 (1881), 228–230.

    Google Scholar 

  151. Bary, N.K. [N.K. Bari]: A treatise on trigonometric series, Per- gamon, 1964 (translated from the Russian).

    MATH  Google Scholar 

  152. Zygmund, A.: Trigonometric series, 1–2, Cambridge Univ. Press, 1988.

    Google Scholar 

  153. Jordan, C: Course d’anafyse, 1, Gauthier-Villars, 1893.

    Google Scholar 

  154. Halmos, P.R.: Measure theory, v. Nostrand, 1950.

    MATH  Google Scholar 

  155. Natanson, LP.: Theorie der Funktionen einer reellen Veränderlichen, H. Deutsch, Frankfurt a.M., 1961 (translated from the Russian).

    MATH  Google Scholar 

  156. Borel, A.: Linear algebraic groups, Benjamin, 1969.

    MATH  Google Scholar 

  157. Kolchtn, E.R.: ‘Algebraic matrix groups and the Heard - Vessiot theory of homogeneous linear ordinary differential equations’, Ann. of Math 49 (1948), 1–42.

    Article  MathSciNet  Google Scholar 

  158. Borel, A., Carter, R., Curtis, C.W., Iwahori, N., Springer, TA. and Steinberg, R. (eds.): Seminar on alge- braic groups and related finite groups, Lecture notes in math., 131, Springer, 1970.

    Google Scholar 

  159. Steinberg, R.: Conjugacy classes in algebraic groups, Springer, 1974.

    MATH  Google Scholar 

  160. Jordan, C: ‘Théorème sur les équations algébriques’, C.R. Acad Sci Paris 68 (1869), 257–258.

    Google Scholar 

  161. Jordan, C: Traité des substitutions et des équations algébriques, Paris, 1870.

    Google Scholar 

  162. Holder, O.: ‘Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen’, Math. Ann. 34 (1889), 26–56.

    Article  MathSciNet  Google Scholar 

  163. Schreier, O.: ‘Ueber den Jordan—Hölderschen Satz’, Abh. Math. Sent Univ. Hamburg 6, no. 3–4 (1928), 300–302.

    Article  MATH  Google Scholar 

  164. Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).

    Google Scholar 

  165. Birkhoff, G.: Lattice theory, Colloq. Publ., 25, Amer. Math. Soc., 1973.

    Google Scholar 

  166. Cohn, P.M.: Universal algebra, Reidel, 1981.

    Book  MATH  Google Scholar 

  167. Tsalenko, M.Sh. and Shul‘geifer, E.G.: Fundamentals of category theory, Moscow, 1974 (in Russian).

    Google Scholar 

  168. Itogi. Nauk. Algebra. 1964 (1966), 237–274.

    Google Scholar 

  169. Itogi Nauk Algebra. Topol. Geont 1966 (1968), 109–136.

    Google Scholar 

  170. Fofanova, T.S.: ‘Free extensions of partial polygons’, in Ordered sets and lattices, Vol. 2, Saratov, 1974, pp. 99–108 (in Russian).

    Google Scholar 

  171. Hall, M.: The theory of groups, Chelsea, reprint, 1976.

    MATH  Google Scholar 

  172. Jordan, C: Cows d’analyse, 2, Gauthier-Villars, 1894, pp. 285–286.

    Google Scholar 

  173. Shabat, B.V.: Introduction to complex analysis, Moscow, 1967 (in Russian).

    Google Scholar 

  174. Whtttaker, E.T. and Watson, G.N.: A course of modern analysis, Cambridge Univ. Press, 1952, Chapt. 6.

    Google Scholar 

  175. Mitrtnović, D.S. and Kečkić, J.D.: The Cauchy method of residues, Reidel, 1984.

    Google Scholar 

  176. Jordan, C: Traité des substitutions et des équations algébriques, Paris, 1870, pp. 114–125.

    Google Scholar 

  177. Bourbaki, N.: Elements of mathematics. Algebra: Modules. Rings. Forms, 2, Addison-Wesley, 1975, Chapt.4; 5; 6 (translated from the French).

    Google Scholar 

  178. Gantmakher, F.R.: The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).

    Google Scholar 

  179. Lang, S.: Algebra, Addison-Wesley, 1974.

    MATH  Google Scholar 

  180. Mal’tsev, A.I.: Foundations of linear algebra, Freeman, 1963 (translated from the Russian).

    Google Scholar 

  181. Borel, A., Carter, R., Curtis, C. W., Iwahori, N., Springer, TA. and Steinberg, R. (eds.): Seminar on algebraic groups and related finite groups, Lecture notes in math., 131, Springer, 1970.

    Google Scholar 

  182. Steinberg, R.: ‘Classes of elements of semisimple algebraic groups’, in Internal Congress Mathematicians Moscow, 1966, Mir, 1968, pp. 277–283.

    Google Scholar 

  183. Peano, G.: Applicazioni geometriche del calcolo infinitesimale, Bocca, 1887.

    MATH  Google Scholar 

  184. Jordan, C: ‘Remarques sur les intégrates définies’, J. Math. Pures Appl 8 (1892), 69–99.

    Google Scholar 

  185. Nikol’skiǐ, S.M.: A course of mathematical analysis, 2, Mir, 1977 (translated from the Russian).

    Google Scholar 

  186. Kolmogorov, A.N. and Fomtn, S.V.: Elements of the theory of Junctions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).

    Google Scholar 

  187. Jordan, G: Course d’analyse, 1, Gauthier-Villars, 1893.

    Google Scholar 

  188. Vallée-Poussin, Ch.J. de la: Cours d’analyse infinitesimal, 2, Libraire Univ. Louvain, 1925.

    Google Scholar 

  189. Aleksandrov, P.S.: Combinatorial topology, Graylock, Rochester, 1956 (translated from the Russian).

    MATH  Google Scholar 

  190. Dieudonné, J.A.: Foundations of modern analysis, Acad. Press, 1961.

    Google Scholar 

  191. Hurevicz, W. and Wallman, G.: Dimension theory, Princeton Univ. Press, 1948.

    Google Scholar 

  192. Filippov, A.F.: ‘An elementary proof of Jordan’s theorem’, Uspekhi Mat. Nauk 5, no. 5 (1950), 173–176 (in Russian).

    MATH  Google Scholar 

  193. Bing, R.H.: The geometric topology of 3-manifolds, Amer. Math. Soc., 1983.

    MATH  Google Scholar 

  194. Dugundji, J.: Topology, Allyn & Bacon, 1966.

    MATH  Google Scholar 

  195. Null, J. van: Infinite-dimensional topology, prerequisites and introduction, North-Holland, 1988.

    Google Scholar 

  196. O. Veblen: Theory of plane curves in non-metrical Analysis Situs’, Trans. Amer. Math. Soc. 6 (1905), 83–98.

    Article  MathSciNet  MATH  Google Scholar 

  197. Jourdain, P.E.B.: ‘Addition to papers on the equations of mechanics’, Quart. J. Pure Appl Math. 39 (1908), 241–250.

    Google Scholar 

  198. Julia, G.: ‘Mémoire sur I’iteration des fonctions rationneHes’, J. de Math. 8 (1918), 47–245.

    Google Scholar 

  199. Fatou, P.: ‘Sur les equations fonctionneHes’, Bull. Soc. Math. France 47 (1919). 161 -271.

    MathSciNet  Google Scholar 

  200. Fatou, P.: ‘Sur les equations fonctionnelles’, Bull. Soc. Math. France 48 (1920), 33–94.

    MathSciNet  Google Scholar 

  201. Fatou, P.: ‘Sur les equations fonctionneHes’, Bull. Soc. Math. France 48 (1920), 208–314.

    MathSciNet  Google Scholar 

  202. Broun, H.: ‘Invariant sets under iteration of rational functions’, Ark. Mat. 6 (1965), 103–144.

    Article  MathSciNet  Google Scholar 

  203. Blanchard, P.: ‘Complex analytic dynamics’, Bull. Amer. Math. Soc. 11 (1984), 84–141.

    Article  MathSciNet  Google Scholar 

  204. Devaney, R.L.: An introduction to chaotic dynamical systems, Benjamin/Cummings, 1986.

    MATH  Google Scholar 

  205. Peitgen, H.-O. and Richter, P.H.. The beauty of fractals, Springer, 1986.

    Book  MATH  Google Scholar 

  206. Julia, G.: Leçons sur les fonctions uniformes à une point singu-lier essentiel isolé, Gauthier-Villars, 1924.

    Google Scholar 

  207. Markushevich, A.I.: The theory of functions of a complex variable, 3, Chelsea, p. 345 (translated from the Russian).

    Google Scholar 

  208. Lebesgue, H.: Leçons sur l’intégration et la richerche des fonctions primitives, Gauthier-Villars, 1928.

    Google Scholar 

  209. Natanson, L.P.: Theorie der Funktionen einer reellen Veränderlichen, H. Deutsch, Frankfurt a.M., 1961 (translated from the Russian).

    MATH  Google Scholar 

  210. Sz -Nagy, B.: Introduction to real functions and orthogonal expansions, Oxford Univ. Press, 1965.

    MATH  Google Scholar 

  211. Saks, S.: Theory of the integral, Hafner, 1952 (translated from the Polish).

    Google Scholar 

  212. Kolmogoroff, A.N. [A.N. Kolmogorov]: ‘Ueber die analytischen Methoden in der Wahrscheinlichkeitstheorie’, Math. Ann. 104 (1931), 415–458.

    Article  MathSciNet  Google Scholar 

  213. Gihman, I.I. [I.I. Gkhman] and Skorohod, A.V. [A.V. Skorokhod]: The theory of stochastic processes, 2, Springer, 1975, Chapt. 3 (translated from the Russian).

    Google Scholar 

  214. Jacod, J.: Calcul stochastique et problèmes de martingales, Springer, 1979.

    MATH  Google Scholar 

  215. Dynkin, E.B.: Markov processes, I, Springer, 1965, Chapt. 3 (translated from the Russian).

    Google Scholar 

  216. Feller, W.: An introduction to probability theory and its applications, II, Wiley, 1966, Chapt. X.

    Google Scholar 

  217. Rosenblatt, M.: Random processes, Springer, 1974.

    Book  MATH  Google Scholar 

  218. Breiman, L.: Probability, Addison-Wesley, 1968.

    MATH  Google Scholar 

  219. Jung, H.W.E.: ‘Ueber den kleinsten Kreis, der eine ebene Figur einschliesst’, J. Reine Angew. Math. 130 (1901), 310–313.

    Google Scholar 

  220. Danzer, L., Grunbaum, B. and Klee, V.: ‘Helly’s theorem and its relatives’, in V. Klee (ed.): Convexity, Proc. Symp. Pure Math., Vol. 7, Amer. Math. Soc., 1963, pp. 101–180.

    Google Scholar 

  221. Hadwiger, H. and Debrunner, H.: Combinatorial geometry in the plane, Holt, Rinehart & Winston, 1964 (translated from the German).

    Google Scholar 

  222. Bonnesen, T. and Fenchel, W.: Theorie der konvexen Körper, Springer, 1974.

    MATH  Google Scholar 

Download references

Authors

Editor information

M. Hazewinkel

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vinogradov, I.M. (1990). J. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5988-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5988-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5990-3

  • Online ISBN: 978-94-009-5988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics