Skip to main content

An evaluation of the relative robustness of techniques for ecological ordination

  • Chapter
Theory and models in vegetation science

Part of the book series: Advances in vegetation science ((AIVS,volume 8))

Abstract

Simulated vegetation data were used to assess the relative robustness of ordination techniques to variations in the model of community variation in relation to environment. The methods compared were local non-metric multidimensional scaling (LNMDS), detrended correspondence analysis (DCA), Gaussian ordination (GO), principal components analysis (PCA) and principal co-ordinates analysis (PCoA). Both LNMDS and PCoA were applied to a matrix of Bray-Curtis coefficients. The results clearly demonstrated the ineffectiveness of the linear techniques (PCA, PCoA), due to curvilinear distortion. Gaussian ordination proved very sensitive to noise and was not robust to marked departures from a symmetric, unimodal response model. The currently popular method of DCA displayed a lack of robustness to variations in the response model and the sampling pattern. Furthermore, DCA ordinations of two-dimensional models often exhibited marked distortions, even when response surfaces were unimodal and symmetric. LNMDS is recommended as a robust technique for indirect gradient analysis, which deserves more widespread use by community ecologists.

I acknowledge the encouragement of Dr M. P. Austin and Dr B. M. Potts and the co-operation of the staff of the University of Tasmania computing centre. I also thank Prof. R. S. Clymo, Dr I. C. Prentice and Prof. L. Orleci for helpful comments on the manuscript. This work formed part of a Ph.D. project at the Botany Department, University of Tasmania, during which I held an Australian Commonwealth Postgraduate Research Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, M. P., 1976. Performance of four ordination techniques assuming different non-linear species response models. Vegetatio 33: 43–49.

    Article  Google Scholar 

  • Austin, M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Article  Google Scholar 

  • Austin, M. P., 1985. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Article  Google Scholar 

  • Austin, M. P., 1987. Models for the analysis of species’ response to environmental gradients. Vegetatio 69: 35–45.

    Article  Google Scholar 

  • Austin, M. P., Cunningham, R. B. & Fleming, P. M., 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.

    Article  Google Scholar 

  • Austin, M. P. & Noy-Meir, I., 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Article  Google Scholar 

  • Beatty, S. W., 1984. Influence of microtopography and canopy species on spatial patterns of forest understorey plants. Ecology 65: 1406–1419.

    Article  Google Scholar 

  • Bradfield, G. E. & Scagel, A., 1984. Correlations among vegetation strata and environmental variables in subalpine spruce-fir forests - southeast British Columbia. Vegetatio 55: 105–114.

    Google Scholar 

  • Brown, M. J., Ratkowsky, D. A. & Minchin, P. R., 1984. A comparison of detrended correspondence analysis and principal co-ordinates analysis using four sets of Tasmanian vegetation data. Aust. J. Ecol. 9: 273–279.

    Article  Google Scholar 

  • Chardy, P., Glemarec, M. & Laurec, A., 1976. Application of inertia methods to benthic marine ecology: practical implications of the basic options. Estuar. Coast. Mar. Sci. 4: 179–205.

    Article  Google Scholar 

  • Clymo, R. S., 1980. Preliminary survey of the peat-bog Hummell Knowe Moss using various numerical methods. Vegetatio 42: 129–148.

    Article  Google Scholar 

  • Dargie, T. C. D., 1984. On the integrated interpretation of indirect site ordinations: a case study using semi-arid vegetation in southeastern Spain. Vegetatio 55: 37–55.

    Article  Google Scholar 

  • Del Moral, R., 1980. On selecting indirect ordination methods. Vegetatio 42: 75–84.

    Article  Google Scholar 

  • Faith, D. P., Minchin, P. R. & Belbin, L., 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Article  Google Scholar 

  • Fasham, M. J. R., 1977. A comparison of nonmetric multidimensional scaling, principal components analysis and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58: 551–561.

    Article  Google Scholar 

  • Feoli, E. & Feoli Chiapella, L., 1980. Evaluation of ordination methods through simulated coenoclines: some comments. Vegetatio 42: 35–41.

    Article  Google Scholar 

  • Fewster, P. H. & Orlóci, L., 1983. On choosing a resemblance measure for non-linear predictive ordination. Vegetatio 54: 27–35.

    Article  Google Scholar 

  • Field, J. G., Clarke, K. R. & Warwick, R. M., 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.

    Article  Google Scholar 

  • Gauch, H. G., 1973. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Article  Google Scholar 

  • Gauch, H. G., 1979. Catalog of the Cornell ecology programs series. 11th ed. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Gauch, H. G., 1982. Multivariate analysis in community ecology. Cambridge University Press, London and New York.

    Google Scholar 

  • Gauch, H. G., Chase, G. B. & Whittaker, R. H., 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55: 1382–1390.

    Article  Google Scholar 

  • Gauch, H. G. & Whittaker, R. H., 1972a. Coenocline simulation. Ecology 53: 446–451.

    Article  Google Scholar 

  • Gauch, H. G. & Whittaker, R. H., 1972b. Comparison of ordination techniques. Ecology 53: 868–875.

    Article  Google Scholar 

  • Gauch, H. G. & Whittaker, R. H., 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Article  Google Scholar 

  • Gauch, H. G., Whittaker, R. H. & Singer, S. B., 1981. A comparative study of nonmetric ordinations. J. Ecol. 69: 135–152.

    Article  Google Scholar 

  • Gibson, N. & Kirkpatrick, J. B., 1985. Vegetation and flora associated with localised snow accumulation at Mount Field West, Tasmania. Aust. J. Ecol. 10: 91–99.

    Article  Google Scholar 

  • Goodall, D. W. & Johnson, R. W., 1982. Non-linear ordination in several dimensions. A maximum likelihood approach. Vegetatio 48: 197–208.

    Google Scholar 

  • Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Greig-Smith, P., 1980. The development of numerical classification and ordination. Vegetatio 42: 1–9.

    Article  Google Scholar 

  • Greig-Smith, P., 1983. Quantitative plant ecology. 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Hill, M. O., 1979. DECORANA - A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill, M. O. & Gauch, H. G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. J. Ed. Psych. 24: 417–441 & 498–520.

    Article  Google Scholar 

  • Ihm, P. & Van Groenewoud, H., 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.

    Article  Google Scholar 

  • Johnson, R. W. & Goodall, D. W., 1979. Maximum likelihood approach to non-linear ordination. Vegetatio 41: 133–142.

    Article  Google Scholar 

  • Kruskal, J. B., 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Article  Google Scholar 

  • Kruskal, J. B., 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Article  Google Scholar 

  • Loucks, O. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Article  Google Scholar 

  • Minchin, P. R., 1983. A comparative evaluation of techniques for ecological ordination using simulated vegetation data and an integrated ordination-classification analysis of the alpine and subalpine plant communities of the Mt Field Plateau, Tasmania. Ph.D. thesis, University of Tasmania.

    Google Scholar 

  • Minchin, P. R., 1987. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio (in press).

    Google Scholar 

  • Mohler, C. L., 1981. Effects of sample distribution along gra- dients on eigenvector ordination. Vegetatio 45: 141–145.

    Article  Google Scholar 

  • Noy-Meir, I. & Austin, M. P., 1970. Principal-component ordination and simulated vegetational data. Ecology 51: 551–552.

    Article  Google Scholar 

  • Oksanen, J., 1983. Ordination of boreal heath-like vegetation with principal component analysis, correspondence analysis and multidimensional scaling. Vegetatio 52: 181–189.

    Article  Google Scholar 

  • Orlóci, L., 1974. On information flow in ordination. Vegetatio 29: 11–16.

    Article  Google Scholar 

  • Orlóci, L., 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Orlóci, L., 1980. An algorithm for predictive ordination. Vegetatio 42: 23–25.

    Article  Google Scholar 

  • Orlóci, L., Kenkel, N. C. & Fewster, P. H., 1984. Probing simulated vegetation data for complex trends by linear and nonlinear ordination methods. Abstr. Bot. 8: 163–172.

    Google Scholar 

  • Prentice, I. C., 1977. Non-metric ordination methods in ecology. J. Ecol. 65: 85–94.

    Article  Google Scholar 

  • Prentice, I. C., 1980. Vegetation analysis and order invariant gradient models. Vegetatio 42: 27–34.

    Article  Google Scholar 

  • Robertson, P. A., MacKenzie, M. D. & Elliot, L. F., 1984. Gradient analysis and classification of the woody vegetation for four sites in southern Illinois and adjacent Missouri. Vegetatio 58: 87–104.

    Article  Google Scholar 

  • Rotenberry, J. T. & Wiens, J. A., 1980. Habitat structure, patchiness and avian communities in North American steppe vegetation: a multivariate analysis. Ecology 61: 1228–1250.

    Article  Google Scholar 

  • Schönemann, P. H. & Carroll, R. M., 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–255.

    Article  Google Scholar 

  • Sibson, R., 1972. Order invariant methods for data analysis. J. Roy. Statist. Soc. B. 34: 311–349.

    Google Scholar 

  • Swan, J. M. A., 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Article  Google Scholar 

  • Van der Maarel, E., 1980. On the interpretability of ordination diagrams. Vegetatio 42: 43–45.

    Article  Google Scholar 

  • Van der Maarel, E., Boot, R., Van Dorp D. & Rijntjes, J., 1985. Vegetation succession on the dunes near Oostvoorne, The Netherlands; a comparison of the vegetation in 1959 and 1980. Vegetatio 58: 137–187.

    Article  Google Scholar 

  • Walker, J. & Peet, R. K., 1983. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio 55: 163–179.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Article  Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H. & Gauch, H. G., 1978. Evaluation of ordination techniques. In: R. H. Whittaker (ed.), Ordination of plant communities, pp. 227–336. Junk, The Hague.

    Google Scholar 

  • Young, F. W. & Lewyckyj, R., 1979. ALSCAL-4 User’s Guide. Data Analysis and Theory Associates, P.O. Box 446, Carrboro, North Carolina.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice, I.C., van der Maarel, E. (eds) Theory and models in vegetation science. Advances in vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4061-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4061-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8303-4

  • Online ISBN: 978-94-009-4061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics