Skip to main content
Log in

On choosing a resemblance measure for non-linear predictive ordination

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The development of non-linear ordination techniques has stemmed in part from work suggesting that species behave non-linearly to changing environmental factors or gradients. Developments in this area can be seen in two related phases: new algorithms, and the incorporation of new resemblance measures. Emphasis in this paper is placed on resemblance measures incorporated into a method of multi-dimensional scaling. The results show that a resemblance measure which reflects the non-linearities of the data can produce significant improvement in ordination, if the standardizations have not been too ‘severe’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin M. P., 1976. Performance of four ordination techniques assuming three different non-linear species response models. Vegetatio 33: 43–49.

    Google Scholar 

  • Austin M. P., 1979. Current approaches to the non-linearity problem in vegetation analysis. In: Patil G. P. & Rosenzweig M. L. (eds.), Contemporary Quantitative Ecology and Related Ecometrics, pp. 197–210. ICPH, Fairland, Maryland.

    Google Scholar 

  • Austin M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Brambilla, C. & Salzano, G, 1981. A non-metric multi-dimensional scaling method for non-linear dimension reduction. Istituto per le Applicazioni del Calcolo ‘Mauro Picone’. Quaderni, Serie III-N. 121. 35 pp.

  • Fasham M. J. R., 1977. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 58: 551–561.

    Google Scholar 

  • Feoli D. & Feoli Chiapella L., 1980. Evaluation of ordination methods through simulated coenoclines: some comments. Vegetatio 42: 35–41.

    Google Scholar 

  • Forsythe W. L. & Loucks O. L., 1972. A transformation for species response to habitat factors. Ecology 53: 1112–1119.

    Google Scholar 

  • Gauch H. G., 1973. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • Gauch H. G., Chase G. B. & Whittaker R. H., 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55: 1382–1390.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H., 1972. Comparison of ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • Groenewoud H. van, 1965. Ordination and classification of Swiss and Canadian coniferous forests by various biometric and other methods. Ber. Geobot. Inst. ETH Stiftg. Rübel, Zürich 36: 28–102.

    Google Scholar 

  • Hill M. O. & Gauch H. G., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Ihm P. & van Groenewoud H., 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.

    Google Scholar 

  • Johnson, R., 1973. A study of some multivariate methods for the analysis of botanical data. Ph.D. dissertation, Utah State Univ., Logan, Utah.

  • Johnson R. W. & Goodall D. W., 1980. A maxim likelihood approach to non-linear ordination. Vegetatio 41: 133–142.

    Google Scholar 

  • Kendall D. G., 1971. Seriation from abundance matrices. In: Hodson F. R., Kendall D. G. & Tautu P. (eds.), Mathematics in the Archaeological and Historical Sciences, pp. 215–252. Edinburgh Univ. Press, Edingburgh.

    Google Scholar 

  • Kruskal J. B., 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal J. B., 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Noy-Meir I. & Austin M. P., 1970. Principal component ordination and simulated vegetational data. Ecology 51: 551–552.

    Google Scholar 

  • Orlóci L., 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Junk The Hague. 451 pp.

    Google Scholar 

  • Orlóci L., 1980. An algorithm for predictive ordination. Vegetatio 42: 23–25.

    Google Scholar 

  • Phillips D. L., 1978. Polynomial ordination: field and computer simulation testing of a new method. Vegetatio 37: 129–140.

    Google Scholar 

  • Werger, M. J. A., Louppen, J. M. W. & Eppink, J. H. M., 1983. Species performances and vegetation boundaries along an environmental gradient. Vegetatio (in press).

  • Whittaker R. H., 1956. Vegetation of the Great Smoky Mountains. Ecol. Monog. 26: 1–80.

    Google Scholar 

  • Whittaker R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Whittaker R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

One of the authors (L. Orlóci) was a recipient of an N.S.E.R.C. grant during the tenure of this project. The authors with to thank C. Brambilla and G. Salzano for the use of their computer program. A copy of a modified version used here may be obtained from the first author at no charge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fewster, P.H., Orlóci, L. On choosing a resemblance measure for non-linear predictive ordination. Vegetatio 54, 27–35 (1983). https://doi.org/10.1007/BF00036078

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036078

Keywords

Navigation