Skip to main content

Embryogenic callus, cell suspension and protoplast cultures of cereals

  • Chapter
Plant Tissue Culture Manual
  • 1395 Accesses

Abstract

Cereals constitute the most important source of calories and protein for man since more than 52% of our food is derived from grains such as wheat, rice, maize, barley, millets, etc. Cereals, therefore, are an obvious and important target for genetic manipulation by modern biotechnological methods which require efficient regeneration of plants from cultured tissues and cells, and genetic transformation, two important and interacting components of plant biotechnology. In addition, owing to the serious problems still being faced in Agrobacterium-mediated transformation of cereals, the development of a reliable protoplast regeneration system for direct DNA delivery is also a necessity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Special cover Book
USD 59.95
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Pl Physiol 128: 193–218.

    Article  Google Scholar 

  2. Bright SWJ, Jones MGK, eds (1985) Cereal Tissue and Cell Culture. Amsterdam: Martinus Nijhoff/Dr W Junk.

    Google Scholar 

  3. Vasil IK, Vasil V (1986) Regeneration in cereal and other grass species. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 3, Plant Regeneration and Genetic Variability, pp 121–150. Orlando: Academic Press.

    Chapter  Google Scholar 

  4. Morrish, F, Vasil V, Vasil IK (1987) Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv Genet 24: 431–499.

    Article  CAS  Google Scholar 

  5. Vasil IK (1988) Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology 6: 397–402.

    Article  Google Scholar 

  6. Potrykus, I (1990) Gene transfer to cereals: an assessment. Bio/Technology 8: 535–542.

    Article  CAS  Google Scholar 

  7. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–277.

    Article  CAS  Google Scholar 

  8. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams Jr WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. The PI Cell 2: 603–618.

    CAS  Google Scholar 

  9. Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Bio/Technology 8: 736–740.

    Article  CAS  Google Scholar 

  10. Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum x P. purpureum hybrid. Amer J Bot 68: 864–872.

    Article  Google Scholar 

  11. Vasil V, Vasil IK (1984) Induction and maintenance of embryogenic callus cultures of Gramineae. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 1, Laboratory Procedures and Their Applications, pp 36–42. Orlando: Academic Press.

    Google Scholar 

  12. Wernicke W, Brettell R (1980) Somatic embryogenesis from Sorghum bicolor leaves. Nature 287: 138–139.

    Article  Google Scholar 

  13. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of proline. Planta 164: 207–214.

    Article  CAS  Google Scholar 

  14. Vasil V, Vasil IK (1986) Plant regeneration from friable embryogenic callus and cell suspension cultures of Zea mays. J Pl Physiol 124: 399–408.

    Article  CAS  Google Scholar 

  15. Swedlund B, Vasil IK (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum ( L) K Schum. Theoret Appl Genet 69: 575–581.

    Google Scholar 

  16. Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann Bot 47: 669–678.

    Google Scholar 

  17. Vasil V, Vasil IK (1984) Isolation and maintenance of embryogenic cell suspension cultures of Gramineae. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 1, Laboratory Procedures and Their Applications, pp 152–158. Orlando: Academic Press.

    Google Scholar 

  18. Redway, F, Vasil V, Vasil IK (1990) Characterization and regeneration of wheat (Triticum aestivum) embryogenic cell suspension cultures. Pl Cell Rep 8: 714–717.

    Article  CAS  Google Scholar 

  19. Shillito RD, Carswell, GK, Johnson CM, DiMaio JJ, Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Article  Google Scholar 

  20. Gnanaprasagam S, Vasil IK (1990) Plant regeneration from cryopreserved embryogenic suspension cultures of a commercial sugarcane hybrid (Saccharum spp). Pl Cell Rep 9: 419–423.

    Google Scholar 

  21. Vasil IK (1983) Isolation and culture of protoplasts of grasses. Int Rev Cytol Supp 16: 79–88.

    Google Scholar 

  22. Yamada Y, Yang Z, Tang D (1986) Plant regeneration from protoplast derived callus of rice (Oryza sativa L). Pl Cell Rep 5: 85–88.

    Article  Google Scholar 

  23. Vasil V, Redway F, Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L). Bio/Technology 8: 429–434.

    Google Scholar 

  24. Tabaeizadeh, Z, Ferl RJ, Vasil IK (1986) Somatic hybridization in the Gramineae: Saccharum officinarum L (sugarcane) + Pennisetum americanum ( L) K Schum (pearl millet ). Proc Nat Acad Sci USA 83: 5616–5619.

    Google Scholar 

  25. Kyozuka J, Kaneda T, Shimamoto K (1989) Production of cytoplasmic male sterile rice (Oryza sativa L) by cell fusion. Bio/Technology 7: 1171–1174.

    Google Scholar 

  26. Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  27. Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. PI Physiol 86: 602–606.

    Article  CAS  Google Scholar 

  28. Vasil V, Hauptmann RM, Morrish FM, Vasil IK (1988) Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq ( Guinea grass) by electroporation and polyethylene glycol. Pl Cell Rep 7: 499–503.

    Google Scholar 

  29. Callis, J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Develop 1: 1183–1200.

    Article  PubMed  CAS  Google Scholar 

  30. Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC (1989) Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Pl Physiol 91: 1575–1579.

    Article  CAS  Google Scholar 

  31. Klein TM, Kornstein L, Sanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Pl Physiol 91: 440–444.

    Article  CAS  Google Scholar 

  32. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  33. Redway FA, Vasil V, Lu D, Vasil IK (1990) Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L). Theoret Appl Genet 79: 609–617.

    Article  Google Scholar 

  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  35. Haydu Z,Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum. Theoret Appl Genet 59: 269–273.

    Google Scholar 

  36. Lu C, Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theoret Appl Genet 59: 275–280.

    Article  Google Scholar 

  37. Ho W, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L). I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118: 169–180.

    Google Scholar 

  38. Botti C, Vasil IK (1984) The ontogeny of somatic embryos of Pennisetum americanum (L) K Schum. II. In immature inflorescences. Canad J Bot 62: 1629–1635.

    Google Scholar 

  39. Vasil V, Vasil IK (1982) Characterization of an embryogenic cell suspension culture derived from inflorescences of Pennisetum americanum (pearl millet; Gramineae ). Amer J Bot 69: 1441–1449.

    Google Scholar 

  40. Green CE, Armstrong CL, Anderson PC (1983) Somatic cell genetic systems in corn. In: Downey K, Voellmy RW, Ahmad F, Schulz J (eds), Advances in Gene Technology: Molecular Genetics of Plants and Animals, pp 147–157. New York: Academic Press.

    Google Scholar 

  41. Vasil V, Vasil IK (1980) Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theoret Appl Genet 56: 97–99.

    Article  Google Scholar 

  42. Srinivasan C, Vasil IK (1986) Plant regeneration from protoplasts of sugarcane. J PI Physiol 126: 4–48.

    Google Scholar 

  43. Rhodes CA, Lowe KS, Ruby KL (1988) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6: 56–60.

    Article  Google Scholar 

  44. Kao, KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126: 105–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vasil, I.K., Vasil, V. (1991). Embryogenic callus, cell suspension and protoplast cultures of cereals. In: Lindsey, K. (eds) Plant Tissue Culture Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0103-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0103-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7658-3

  • Online ISBN: 978-94-009-0103-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics