Skip to main content

Nanotribological Characterization of Polymeric Nanocoatings: From Fundamental to Application

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

Polymers are chemical compounds or mixture of compounds consisting of repeating structural units created through a process known polymerization. These are important groups of materials made up of long chain carbon, covalently bonded together. Polymerization is a process in which monomeric molecules react together chemically to form macromolecules. Polymers are now finding increasing use in engineering applications due to unique properties. Mechanical strength of polymers is of prime importance in engineering applications. Polymers in their service life are exposed to different mechanical and thermal stresses. Durability of polymer strongly depends on the resistance of these materials against environmental condition. In order to assess the strength of material, good knowledge on mechanic of materials is imperative. In this manner, this section aims at introducing mechanical properties of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amerio E, Sangermano M, Malucelli G, Priola A, Voit B (2005) Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol–gel process. Polymer 46:11241

    Article  Google Scholar 

  • Amerio E, Sangermano M, Colucci G, Malucelli G, Messori M, Taurino R, Fabbri P (2008) UV curing of Organic-Inorganic hybrid coatings containing Polyhedral Oligomeric Silsesquioxane blocks. Macromol Mater Eng 293:700–707

    Article  Google Scholar 

  • Barletta M, Bellisario D, Rubino G, Ucciardello N (2010) Scratch and wear resistance of transparent topcoats on carbon laminates. Prog Org Coat 67:209

    Article  Google Scholar 

  • Bautista Y, Gómez MP, Ribes C, Sanz V (2011) Correlation between the wear resistance, and the scratch resistance, for nanocomposite coatings. Prog Org Coat 70(4):178

    Article  Google Scholar 

  • Bertrand-Lambotte P, Loubet JL, Verpy C, Pavan S (2002) Understanding of automotive clearcoats scratch resistance. Thin Solid Films 420–421:281

    Article  Google Scholar 

  • Binyang D, Ophelia KC, Qingling Z, Tianbai H (2001) Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17:3286

    Article  Google Scholar 

  • Bowden PB (1973) In: Haward RN (ed) The physics of glassy polymers. Applied Science Publisher Ltd., London

    Google Scholar 

  • Bowden PB, Young RJ (1974) Deformation mechanisms in crystalline polymers. J Mater Sci 9:2034

    Article  Google Scholar 

  • Briscoe BJ, Evans PD, Pelillo E, Sinha SK (1996a) Scratching maps for polymers. Wear 200:137

    Article  Google Scholar 

  • Briscoe BJ, Pelillo E, Sinha SK (1996b) Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym Eng Sci 36(24):2996

    Article  Google Scholar 

  • Carrión FJ, Ao Arribas, Bermu’dez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polymer J 44:968–977

    Article  Google Scholar 

  • Cartledge HCY, Baillie C, Mai YW (1996) Friction and wear mechanisms of a thermoplastic composite GF/PA6 subjected to different thermal histories. Wear 194:178

    Article  Google Scholar 

  • Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic Polyhedral Oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  Google Scholar 

  • Courter JL (1997) Mar resistance of automotive clearcoat: I. Relationship to coating mechanical properties. J Coat Technol 69(866):57

    Google Scholar 

  • Groenewolt M (2008) Highly scratch resistant coatings for automotive applications. Prog Org Coat 61:106

    Article  Google Scholar 

  • Hara Y, Mori T, Fujitani T (2000) Relationship between viscoelasticity and scratch morphology of coating films. Prog Org Coat 40:39

    Article  Google Scholar 

  • Hou X, Shan CX, Choy KL (2008) Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles. Surf Coat Technol 202:2287

    Article  Google Scholar 

  • Hutchings IM (1992) Tribology-Friction and wear of engineering materials. CRC Press, Boca Raton

    Google Scholar 

  • Jardret V, Morel P (2003) Viscoelastic effects on the scratch resistance of polymers: relationship between mechanical properties and scratch properties at various temperatures. Prog Org Coat 48:322

    Article  Google Scholar 

  • Jardret V, Ryntz R (2005) Visco-Elastic Visco-Plastic analysis of scratch resistance of organic coatings. J Coat Technol Res 2(8):591

    Article  Google Scholar 

  • Jardret V, Zahouani H, Loubet JL, Mathia TG (1998) Understanding and quantification of elastic and plastic deformation during a scratch test. Wear 218:8

    Article  Google Scholar 

  • Jardret V, Lucas BN, Oliver W (2000) Scratch durability of automotive clear coatings: a quantitative, reliable and robust methodology. J Coat Technol 72(907):79

    Article  Google Scholar 

  • Kinloch AJ, Young RJ (1983) Fracture behavior of polymers. Applied Science Publishers Ltd., London

    Google Scholar 

  • Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S, Pasquali L, Nannarone S (2003) Flame retarding poly(methyl methacrylate) with nanostructured organic–inorganic hybrids coatings. Polymer 44:4463

    Article  Google Scholar 

  • Nat DS (1980) A text book of materials and metallurgy. Katson Publishing House, Ludhiana

    Google Scholar 

  • Nielsen LE (1962) Mechanical properties of polymers and composites. Dekker M. INC

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  • Osterhold M, Wagner G (2002) Methods for characterizing the mar resistance. Prog Org Coat 45:365

    Article  Google Scholar 

  • Persson BNJ (2000) Sliding Friction–Physical principles and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Ramezanzadeh B, Mohseni M (2012) Preparation of sol–gel based nano-structured hybrid coatings: effects of combined precursor’s mixtures on coatings morphological and mechanical properties. J Sol-Gel Sci Technol 64:232–244

    Article  Google Scholar 

  • Ramezanzadeh B, Moradian S, Khosravi A, Tahmasebi N (2011a) A new approach to investigate scratch morphology and appearance of an automotive coating containing nano-SiO2 and polysiloxane additives. Prog Org Coat 72(3):541

    Article  Google Scholar 

  • Ramezanzadeh B, Moradian S, Tahmasebi N, Khosravi A (2011b) Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat. Prog Org Coat 72:621

    Article  Google Scholar 

  • Ramezanzadeh B, Mohseni M, Karbasi A (2012a) Preparation of sol–gel-based nanostructured hybrid coatings, part 1: morphological and mechanical studies. J Mater Sci 47:440–454

    Google Scholar 

  • Ramezanzadeh B, Moradian S, Khosravi A, Tahmassebi N (2012b) Effect of polysiloxane additives on the scratch resistance of an acrylic melamine automotive clearcoat. J Coat Technol Res 9(2):203

    Article  Google Scholar 

  • Rostami M, Ranjbar Z, Mohseni M (2010) Investigating the interfacial interaction of different aminosilane treated nano silicas with a polyurethane coating. Appl Surf Sci 257:899–904

    Article  Google Scholar 

  • Rostami M, Mohseni M, Ranjbar Z (2012) An attempt to quantitatively predict the interfacial adhesion of differently surface treated nanosilicas in a polyurethane coating matrix using tensile strength and DMTA analysis. Int J Adhes Adhes 34:24–31

    Article  Google Scholar 

  • Salleh NGN, Yhaya MF, Hassan A, Bakar AA, Mokhtar M (2009) Development of Scratchand Abrasion-Resistant coating materials based on nanoparticles, cured by radiation. Int J Polym Mater 58:422

    Article  Google Scholar 

  • Schwarzentruber P (2002) Scratch resistance and weatherfastness of UV-curable clearcoats. Macromol Symp 187:531

    Article  Google Scholar 

  • Suna J, Mukamal H, Liu Z, Shen W (2002) Analysis of the Taber test in characterization of automotive side windows. Tribo Lett 13:49

    Article  Google Scholar 

  • Tahmassebi N, Moradian S, Ramezanzadeh B, Khosravi A, Behdad S (2010) Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat. Tribo Intern 43:685

    Article  Google Scholar 

  • Wang ZZ, Gu P, Zhang Z (2010) Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale. Wear 269:21–25

    Article  Google Scholar 

  • Yahyaei H, Mohseni M (2013) Use of nanoindentation and nanoscratch experiments to reveal the mechanical behavior of sol–gel prepared nanocomposite films on polycarbonate. Tribol Int 57:147–155

    Article  Google Scholar 

  • Yahyaei H, Mohseni M, Bastani S (2011) Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate. J Sol-Gel Sci Technol 59:95–105

    Article  Google Scholar 

  • Yang ACM, Wu TW (1997) Wear and friction in glassy polymers: micro-scratch on blends of polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide). J Polym Sci B: Polym Phys 35:1295

    Article  Google Scholar 

  • Yari H, Moradian S, Tahmasebi N, Arefmanesh M (2012) The effect of weathering on tribological properties of an acrylic melamine automotive nanocomposite. Tribol Lett 46:123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohseni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mohseni, M., Yahyaei, H., Yari, H., Ramezanzadeh, B. (2014). Nanotribological Characterization of Polymeric Nanocoatings: From Fundamental to Application. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics