Skip to main content
Log in

The Effect of Weathering on Tribological Properties of an Acrylic Melamine Automotive Nanocomposite

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Acrylic/melamine clearcoats containing different loads of nano silica were artificially weathered by a xenotester, and their tribological properties after various exposure times were studied. Scratch resistances, in terms of gloss retention, of each weathered coating were assessed by a carwash simulator. Scanning electron and optical microscopes were utilized to observe damages caused by carwash brushes. Micro- and nano-indentation tests were carried out after accelerated weathering tests to investigate changes in hardness as well as viscoelastic properties of coatings. Result of this study showed that the scratch resistance of different coatings decreased during weathering at initial times of weathering, followed by a slight increase at later times of weathering. Initial decrease in scratch resistance was attributed to being roughened of the coatings’ surface which increases friction between carwash brushes and the coating surface. The increased scratch resistance at later times was assigned to increase in hardness and elastic recovery of the coatings. It was also found that incorporation of nanoparticles into acrylic melamine clearcoats led to the formation of ductile-type scratches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Radhakrishnan, S., Siju, C.R., Mahanta, D., Patil, S., Madras, G.: Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54, 1249–1254 (2009)

    Article  CAS  Google Scholar 

  2. Liu, F., Yang, L., Han, E.: Effect of particle sizes and pigment volume concentrations on the barrier properties of polyurethane coatings. J. Coat. Technol. Res. 7(3), 301–313 (2010)

    Article  CAS  Google Scholar 

  3. Bagherzadeh, M.R., Mahdavi, F.: Preparation of epoxy–clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating. Prog. Org. Coat. 60, 117–120 (2007)

    Article  CAS  Google Scholar 

  4. Patil, R.C., Radhakrishnan, S.: Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings. Prog. Org. Coat. 57, 332–336 (2006)

    Article  CAS  Google Scholar 

  5. Dhoke, S.K., Sinha, T.J.M., Khanna, A.S.: Effect of nano-Al2O3 particles on the corrosion behavior of alkyd based waterborne coatings. J. Coat. Technol. Res. 6(3), 353–368 (2009)

    Article  CAS  Google Scholar 

  6. Dhoke, S.K., Khanna, A.S., Sinha, T.J.M.: Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog. Org. Coat. 64, 371–382 (2009)

    Article  CAS  Google Scholar 

  7. Peng, G., Li, Q., Yang, Y., Li, H., Wang, W.: Effects of nano ZnO on strength and stability of unsaturated polyester composites. Polym. Adv. Technol. 19, 1629–1634 (2008)

    CAS  Google Scholar 

  8. Zhou, S., Wu, L., Sun, J., Shen, W.: The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog. Org. Coat. 45, 33–42 (2002)

    Article  CAS  Google Scholar 

  9. Xu, T., Xie, C.S.: Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coat. 46, 297–301 (2003)

    Article  CAS  Google Scholar 

  10. Wang, Z., Han, E., Ke, W.: Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER-MEL coating. Polym. Degrad. Stab. 91, 1937–1947 (2006)

    Article  CAS  Google Scholar 

  11. Pereyra, A.M., Canosa, G., Giudice, C.A.: Nanostructured protective coating systems, fireproof and environmentally friendly, suitable for the protection of metallic substrates. Ind. Eng. Chem. Res. 49, 2740–2746 (2010)

    Article  CAS  Google Scholar 

  12. Wu, K., Song, L., Hu, Y., Lu, H., Kandola, B.K., Kandare, E.: Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 65, 490–497 (2009)

    Article  CAS  Google Scholar 

  13. Wang, Z., Han, E., Ke, W.: Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog. Org. Coat. 53, 29–37 (2005)

    Article  CAS  Google Scholar 

  14. Kumar, A., Vemula, P.K., Ajayan, P.M., John, G.: Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241 (2008)

    Article  CAS  Google Scholar 

  15. Dodiuk, H., Rios, P.F., Dotan, A., Kenig, S.: Hydrophobic and self-cleaning coatings. Polym. Adv. Technol. 17, 746–750 (2007)

    Article  Google Scholar 

  16. Kendig, M., Hon, M., Warre, L.: ‘Smart’ corrosion inhibiting coatings. Prog. Org. Coat. 47, 183–189 (2003)

    Article  CAS  Google Scholar 

  17. Tahmassebi, N., Moradian, S., Ramezanzadeh, B., Khosravi, A., Behdad, S.: Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat. Tribol. Int. 43, 685–693 (2010)

    Article  CAS  Google Scholar 

  18. Jalili, M.M., Moradian, S.: Deterministic performance parameters for an automotive polyurethane clearcoat loaded with hydrophilic or hydrophobic nano-silica. Prog. Org. Coat. 66, 359–366 (2009)

    Article  CAS  Google Scholar 

  19. Song, H.J., Zhang, Z.Z.: Study on the tribological behaviors of the phenolic composite coating filled with modified nano-TiO2. Tribol. Int. 41, 396–403 (2008)

    Article  CAS  Google Scholar 

  20. Song, H.J., Zhang, Z.Z., Men, X.H.: The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions. Compos. Part A 39, 188–194 (2008)

    Article  Google Scholar 

  21. Jalili, M.M., Moradian, S., Dastmalchian, H., Karbasi, A.: Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano-silica. Prog. Org. Coat. 59, 81–87 (2007)

    Article  CAS  Google Scholar 

  22. Ramezanzadeh, B., Moradian, S., Tahmassebi, N., Khosravi, A.: Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat. Prog. Org. Coat. (in press). doi:10.1016/j.progcoat.2011.07.003

  23. Yari, H., Moradian, S., Tahmasebi, N.: The effect of nano silica particles on appearance and curing process of automotive clearcoats. In: Proceeding of the ICNN, Tabriz (2008)

  24. Ranjbar, Z., Jannesari, A., Rastegar, S., Montazeri, S.: Study of the influence of nano-silica particles on the curing reactions of acrylic-melamine clear-coats. Prog. Org. Coat. 66, 372–376 (2009)

    Article  CAS  Google Scholar 

  25. Osterhold, M., Patrick, G.: Influence of weathering on physical properties of clearcoats. Prog. Org. Coat. 41, 177–182 (2001)

    Article  CAS  Google Scholar 

  26. Yari, H., Moradian, S., Ramezanzadeh, B., Kashani, A., Tahmasebi, N.: The effect of basecoat pigmentation on mechanical properties of an automotive basecoat/clearcoat system during weathering. Polym. Degrad. Stab. 94, 1281–1289 (2009)

    Article  CAS  Google Scholar 

  27. Radicervic, R., Budinski-Simendic, J.K.: The effects of alkyd/melamine resin ratio and curing temperature on the properties of the coatings. J. Serb. Chem. Soc. 70, 593–599 (2005)

    Article  Google Scholar 

  28. Ramezanzadeh, B., Attar, M.M., Farzam, M.: Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J. Therm. Anal. Calorim. 103, 731–739 (2011)

    Article  CAS  Google Scholar 

  29. Perera, D.: Physical ageing of organic coatings. Prog. Org. Coat. 47, 61–76 (2003)

    Article  CAS  Google Scholar 

  30. Schulz, U., Wachtendorf, V., Klimmasch, T., Alers, P.: The influence of weathering on scratches and on scratches and mar resistance of automotive coatings. Prog. Org. Coat. 42, 38–48 (2001)

    Article  CAS  Google Scholar 

  31. Schulz, U., Wachtendorf, V., Klimmasch, T., Alers, P.: To be always glossy changing of scratch and mar resistance by natural and artificial weathering. Eur. Coat. J. 9, 60–71 (2001)

    Google Scholar 

  32. Yang, X.F., Vang, C., Tallman, D.E., Bierwagen, G.P., Croll, S.G., Rohlik, S.: Weathering degradation of a polyurethane coating. Polym. Degrad. Stab. 74, 341–351 (2001)

    Article  CAS  Google Scholar 

  33. Bertrand-Lambotte, P., Loubet, J.L., Verpy, C., Pavan, S.: Understanding of automotive clearcoats scratch resistance. Thin Solid Films 420–421, 281–286 (2002)

    Article  Google Scholar 

  34. Jones, F.N., Weidian, S., Smith, S.M., Zhihuan, H., Ryntz, R.A.: Studies of microhardness and mar resistance using a scanning probe microscope. Prog. Org. Coat. 34, 119–129 (1998)

    Article  CAS  Google Scholar 

  35. Lin, L., Blackman, G.S., Matheson, R.R.: A new approach to characterize scratch and mar resistance of automotive coatings. Prog. Org. Coat. 40, 85–91 (2000)

    Article  CAS  Google Scholar 

  36. Xiang, C., Sue, H.-J., Chu, J., Coleman, B.: Scratch behavior and material property relationship in polymers. J Polym. Sci. B: Polym. Phys. 39, 47–59 (2001)

    Article  CAS  Google Scholar 

  37. Pourdeyhimi, B., Wang, X., Lee, F.: Evaluation of scratch and mar resistance in automotive coatings: nanoscratching by atomic force microscope. Eur. Coat. J. 3, 5–11 (1999)

    Google Scholar 

  38. Wong, M., Moyse, A., Lee, F., Sue, H.-J.: Study of surface damage of polypropylene under progressive loading. J. Mater. Sci. 39, 3293–3308 (2004)

    Article  CAS  Google Scholar 

  39. Shen, W.: Characterization of mar/scratch resistance of polymeric coatings: part I. J. Coat. Technol. 3, 44–51 (2006)

    CAS  Google Scholar 

  40. Browning, R., Hossain, M.M., Li, J., Jones, S., Sue, H.-J.: Contrast-based evaluation of mar resistance of thermoplastic olefins. Tribol. Int. 44, 1024–1031 (2011)

    Article  CAS  Google Scholar 

  41. Jiang, H., Browning, R.L., Hossain, M.M., Sue, H.-J., Fujiwara, M.: Quantitative evaluation of scratch visibility resistance of polymers. Appl. Surf. Sci. 256, 6324–6329 (2010)

    Article  CAS  Google Scholar 

  42. Courter, J.L.: Mar resistance of automotive clearcoats: 1. Relationship to coating mechanical properties. J. Coat. Technol. 69, 57–63 (1997)

    CAS  Google Scholar 

  43. Hara, Y., Mori, T., Fujitani, T.: Relationship between viscoelasticity and scratch morphology of coating films. Prog. Org. Coat. 40, 39–47 (2000)

    Article  CAS  Google Scholar 

  44. Browning, R., Lim, G., Moyse, A., Sun, L., Sue, H.-J.: Effects of slip agent and talc surface treatment on the scratch behavior of TPOs. Polym. Eng. Sci. 46, 601–608 (2006)

    Article  CAS  Google Scholar 

  45. Shen, W., Jiang, B., Jones, F.N.: Measurement of mar resistance and study of marring mechanism of polymeric coatings with scanning probe microscope. J. Coat. Technol. 72, 89–97 (2000)

    Article  CAS  Google Scholar 

  46. Friedrich, K., Sue, H.-J., Liu, P., Almajid, A.A.: Scratch resistance of high performance polymers. Tribol. Int. 44, 1032–1046 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yari, H., Moradian, S., Tahmasebi, N. et al. The Effect of Weathering on Tribological Properties of an Acrylic Melamine Automotive Nanocomposite. Tribol Lett 46, 123–130 (2012). https://doi.org/10.1007/s11249-012-9928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9928-5

Keywords

Navigation