Skip to main content

Usefulness of Molecular Biology in Follicular-Derived Thyroid Tumors: From Translational Research to Clinical Practice

  • Chapter
  • First Online:
Cancer Genomics

Abstract

The development of molecular biology analyses in thyroid pathology is currently active and provides new diagnostic tools with the aim of accurately distinguishing malignant and benign thyroid tumors. This is particularly useful as most of these analyses can be done preoperatively on thyroid fine-needle aspiration biopsy samples. Furthermore, molecular biomarkers may have a promising role on account of their ability to predict the prognosis of thyroid tumors. Moreover, identification of molecular markers as well as a better understanding of thyroid carcinogenesis are attractive prospects for the development of innovative targeted therapies, particularly in patients with metastatic iodo-resistant thyroid carcinoma.

To date, four types of somatic genetic alterations are known to have a potential interest for the diagnosis and/or prognosis of follicular cell-derived thyroid carcinomas: BRAF and RAS mutations, and RET/PTC and PAX8/PPARγ rearrangements. Other recent molecular biomarkers have been investigated in thyroid oncology, in particular on different microRNA signatures.

The purpose of this review is to describe the different aspects of ancillary methods, including molecular biology, which are of current interest for the diagnosis, prognosis and/or treatment of follicular cell-derived thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18):2164–2167

    Article  PubMed  CAS  Google Scholar 

  2. Grodski S, Delbridge L (2009) An update on papillary microcarcinoma. Curr Opin Oncol 21(1):1–4

    Article  PubMed  Google Scholar 

  3. Pacini F, Castagna MG, Brilli L, Pentheroudakis G (2009) Differentiated thyroid cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(Suppl 4):143–146

    PubMed  Google Scholar 

  4. Leenhardt L, Grosclaude P, Cherie-Challine L (2004) Increased incidence of thyroid carcinoma in France: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 14(12):1056–1060

    Article  PubMed  Google Scholar 

  5. Liu S, Semenciw R, Ugnat AM, Mao Y (2001) Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br J Cancer 85(9):1335–1339

    Article  PubMed  CAS  Google Scholar 

  6. Pacini F, Burroni L, Ciuoli C, Di Cairano G, Guarino E (2004) Management of thyroid nodules: a clinicopathological, evidence-based approach. Eur J Nucl Med Mol Imaging 31(10):1443–1449

    Article  PubMed  Google Scholar 

  7. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214

    Article  PubMed  Google Scholar 

  8. Baloch ZW, LiVolsi VA (2008) Fine-needle aspiration of the thyroid: today and tomorrow. Best Pract Res Clin Endocrinol Metab 22(6):929–939

    Article  PubMed  Google Scholar 

  9. Fischer S, Asa SL (2008) Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 132(3):359–372

    PubMed  Google Scholar 

  10. Carpi A, Mechanick JI, Saussez S, Nicolini A (2010) Thyroid tumor marker genomics and proteomics: diagnostic and clinical implications. J Cell Physiol 224(3):612–619

    Article  PubMed  CAS  Google Scholar 

  11. Yip L, Kebebew E, Milas M, Carty SE, Fahey TJ 3rd, Parangi S, Zeiger MA, Nikiforov YE (2010) Summary statement: utility of molecular marker testing in thyroid cancer. Surgery 148(6):1313–1315

    Article  PubMed  Google Scholar 

  12. Kundra P, Burman KD (2007) Thyroid cancer molecular signaling pathways and use of targeted therapy. Endocrinol Metab Clin North Am 36(3):839–853, viii

    Article  PubMed  CAS  Google Scholar 

  13. Hofman V, Lassalle S, Bonnetaud C, Butori C, Loubatier C, Ilie M, Bordone O, Brest P, Guevara N, Santini J, Franc B, Hofman P (2009) Thyroid tumours of uncertain malignant potential: frequency and diagnostic reproducibility. Virchows Arch 455(1):21–33

    Article  PubMed  CAS  Google Scholar 

  14. Gomez Saez JM (2010) Diagnostic usefulness of tumor markers in the thyroid cytological samples extracted by fine-needle aspiration biopsy. Endocr Metab Immune Disord Drug Targets 10(1):47–56

    Article  PubMed  Google Scholar 

  15. Rezk S, Khan A (2005) Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol 13(3):256–264

    Article  PubMed  Google Scholar 

  16. Erickson LA, Lloyd RV (2004) Practical markers used in the diagnosis of endocrine tumors. Adv Anat Pathol 11(4):175–189

    Article  PubMed  CAS  Google Scholar 

  17. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL (2001) Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14(4):338–342

    Article  PubMed  CAS  Google Scholar 

  18. Park YJ, Kwak SH, Kim DC, Kim H, Choe G, Park do J, Jang HC, Park SH, Cho BY, Park SY (2007) Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci 22(4):621–628

    Article  PubMed  Google Scholar 

  19. Barroeta JE, Baloch ZW, Lal P, Pasha TL, Zhang PJ, LiVolsi VA (2006) Diagnostic value of differential expression of CK19, Galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid: an immunohistochemical tissue microarray analysis. Endocr Pathol 17(3):225–234

    Article  PubMed  CAS  Google Scholar 

  20. Scognamiglio T, Hyjek E, Kao J, Chen YT (2006) Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126(5):700–708

    Article  PubMed  CAS  Google Scholar 

  21. Sethi K, Sarkar S, Das S, Mohanty B, Mandal M (2010) Biomarkers for the diagnosis of thyroid cancer. J Exp Ther Oncol 8(4):341–352

    PubMed  CAS  Google Scholar 

  22. Bartolazzi A, Orlandi F, Saggiorato E, Volante M, Arecco F, Rossetto R, Palestini N, Ghigo E, Papotti M, Bussolati G, Martegani MP, Pantellini F, Carpi A, Giovagnoli MR, Monti S, Toscano V, Sciacchitano S, Pennelli GM, Mian C, Pelizzo MR, Rugge M, Troncone G, Palombini L, Chiappetta G, Botti G, Vecchione A, Bellocco R (2008) Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol 9(6):543–549

    Article  PubMed  CAS  Google Scholar 

  23. Martins L, Matsuo SE, Ebina KN, Kulcsar MA, Friguglietti CU, Kimura ET (2002) Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors. J Clin Endocrinol Metab 87(10):4806–4810

    Article  PubMed  CAS  Google Scholar 

  24. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J (2005) Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 18(4):541–546

    Article  PubMed  CAS  Google Scholar 

  25. Troncone G, Volante M, Iaccarino A, Zeppa P, Cozzolino I, Malapelle U, Palmieri EA, Conzo G, Papotti M, Palombini L (2009) Cyclin D1 and D3 overexpression predicts malignant behavior in thyroid fine-needle aspirates suspicious for Hurthle cell neoplasms. Cancer Cytopathol 117(6):522–529

    CAS  Google Scholar 

  26. Jacques C, Fontaine JF, Franc B, Mirebeau-Prunier D, Triau S, Savagner F, Malthiery Y (2009) Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours. Br J Cancer 101(1):132–138

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca E, Soares P, Cardoso-Oliveira M, Sobrinho-Simoes M (2006) Diagnostic criteria in well-differentiated thyroid carcinomas. Endocr Pathol 17(2):109–117

    Article  PubMed  CAS  Google Scholar 

  28. Suster S (2006) Thyroid tumors with a follicular growth pattern: problems in differential diagnosis. Arch Pathol Lab Med 130(7):984–988

    PubMed  Google Scholar 

  29. Lassalle S, Hofman V, Ilie M, Butori C, Bozec A, Santini J, Vielh P, Hofman P (2010) Clinical impact of the detection of BRAF mutations in thyroid pathology: potential usefulness as diagnostic, prognostic and theragnostic applications. Curr Med Chem 17:1839–1850

    Article  PubMed  CAS  Google Scholar 

  30. Fagin JA, Mitsiades N (2008) Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab 22(6):955–969

    Article  PubMed  CAS  Google Scholar 

  31. Liu D, Liu Z, Condouris S, Xing M (2007) BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 92(6):2264–2271

    Article  PubMed  CAS  Google Scholar 

  32. Kouniavsky G, Zeiger MA (2010) Thyroid tumorigenesis and molecular markers in thyroid cancer. Curr Opin Oncol 22(1):23–29

    Article  PubMed  CAS  Google Scholar 

  33. Brzezianska E, Karbownik M, Migdalska-Sek M, Pastuszak-Lewandoska D, Wloch J, Lewinski A (2006) Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res 599(1–2):26–35

    PubMed  CAS  Google Scholar 

  34. Xing M (2009) Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321(1):86–93

    Article  PubMed  CAS  Google Scholar 

  35. Nikiforova MN, Nikiforov YE (2009) Molecular diagnostics and predictors in thyroid cancer. Thyroid 19(12):1351–1361

    Article  PubMed  CAS  Google Scholar 

  36. Emuss V, Garnett M, Mason C, Marais R (2005) Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65(21):9719–9726

    Article  PubMed  CAS  Google Scholar 

  37. Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA (2005) Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65(10):4238–4245

    Article  PubMed  CAS  Google Scholar 

  38. Bozec A, Lassalle S, Hofman V, Ilie M, Santini J, Hofman P (2010) The thyroid gland: a crossroad in inflammation-induced carcinoma? An ongoing debate with new therapeutic potential. Curr Med Chem 17(30):3449–3461

    Article  PubMed  CAS  Google Scholar 

  39. Guarino V, Castellone MD, Avilla E, Melillo RM (2010) Thyroid cancer and inflammation. Mol Cell Endocrinol 321:94–102

    Article  PubMed  CAS  Google Scholar 

  40. Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28(7):742–762

    Article  PubMed  CAS  Google Scholar 

  41. Lee JH, Lee ES, Kim YS (2007) Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 110(1):38–46

    Article  PubMed  Google Scholar 

  42. Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P, Maximo V, Botelho T, Moreira S, Meireles AM, Magalhaes J, Abrosimov A, Cameselle-Teijeiro J, Sobrinho-Simoes M (2005) Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch 446(6):589–595

    Article  PubMed  CAS  Google Scholar 

  43. Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V, Vieira de Castro I, Cardoso-de-Oliveira M, Fonseca E, Soares P, Sobrinho-Simoes M (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–220

    Article  PubMed  CAS  Google Scholar 

  44. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, Rabes HM, Fagin JA, Nikiforov YE (2005) Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115(1):94–101

    PubMed  CAS  Google Scholar 

  45. Ciampi R, Knauf JA, Rabes HM, Fagin JA, Nikiforov YE (2005) BRAF kinase activation via chromosomal rearrangement in radiation-induced and sporadic thyroid cancer. Cell Cycle 4(4):547–548

    Article  PubMed  CAS  Google Scholar 

  46. Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M, Takahashi M (2005) The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96(3):143–148

    Article  PubMed  CAS  Google Scholar 

  47. Santoro M, Melillo RM, Fusco A (2006) RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 155(5):645–653

    Article  PubMed  CAS  Google Scholar 

  48. Mitsutake N, Miyagishi M, Mitsutake S, Akeno N, Mesa C Jr, Knauf JA, Zhang L, Taira K, Fagin JA (2006) BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology 147(2):1014–1019

    Article  PubMed  CAS  Google Scholar 

  49. Powell DJ Jr, Russell J, Nibu K, Li G, Rhee E, Liao M, Goldstein M, Keane WM, Santoro M, Fusco A, Rothstein JL (1998) The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res 58(23):5523–5528

    PubMed  CAS  Google Scholar 

  50. Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Vecchio G, Fusco A (1996) Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12(8):1821–1826

    PubMed  CAS  Google Scholar 

  51. De Vita G, Zannini M, Cirafici AM, Melillo RM, Di Lauro R, Fusco A, Santoro M (1998) Expression of the RET/PTC1 oncogene impairs the activity of TTF-1 and Pax-8 thyroid transcription factors. Cell Growth Differ 9(1):97–103

    PubMed  Google Scholar 

  52. Trapasso F, Iuliano R, Chiefari E, Arturi F, Stella A, Filetti S, Fusco A, Russo D (1999) Iodide symporter gene expression in normal and transformed rat thyroid cells. Eur J Endocrinol 140(5):447–451

    Article  PubMed  CAS  Google Scholar 

  53. Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16(4–5):441–467

    Article  PubMed  CAS  Google Scholar 

  54. Castellone MD, Santoro M (2008) Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am 37(2):363–374, viii

    Article  PubMed  CAS  Google Scholar 

  55. Cassinelli G, Favini E, Degl’Innocenti D, Salvi A, De Petro G, Pierotti MA, Zunino F, Borrello MG, Lanzi C (2009) RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and beta-catenin nuclear translocation. Neoplasia 11(1):10–21

    PubMed  CAS  Google Scholar 

  56. Castellone MD, Guarino V, De Falco V, Carlomagno F, Basolo F, Faviana P, Kruhoffer M, Orntoft T, Russell JP, Rothstein JL, Fusco A, Santoro M, Melillo RM (2004) Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23(35):5958–5967

    Article  PubMed  CAS  Google Scholar 

  57. Shinohara S, Rothstein JL (2004) Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene 23(45):7571–7579

    Article  PubMed  CAS  Google Scholar 

  58. Nikiforov YE (2006) Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr Pathol 17(4):307–317

    Article  PubMed  CAS  Google Scholar 

  59. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222

    Article  PubMed  Google Scholar 

  60. Muzza M, Degl’Innocenti D, Colombo C, Perrino M, Ravasi E, Rossi S, Cirello V, Beck-Peccoz P, Borrello MG, Fugazzola L (2010) The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol (Oxf) 72(5):702–708

    Article  CAS  Google Scholar 

  61. Nikiforov YE (2006) RET/PTC rearrangement–a link between Hashimoto’s thyroiditis and thyroid cancer…or not. J Clin Endocrinol Metab 91(6):2040–2042

    Article  PubMed  CAS  Google Scholar 

  62. Sheils O, Smyth P, Finn S, Sweeney EC, O’Leary JJ (2002) RET/PTC rearrangements in Hashimoto’s thyroiditis. Int J Surg Pathol 10(2):167–168; author reply 168–169

    Article  PubMed  CAS  Google Scholar 

  63. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G (2006) RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91(6):2414–2423

    Article  PubMed  CAS  Google Scholar 

  64. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91(9):3603–3610

    Article  PubMed  CAS  Google Scholar 

  65. Collins BJ, Chiappetta G, Schneider AB, Santoro M, Pentimalli F, Fogelfeld L, Gierlowski T, Shore-Freedman E, Jaffe G, Fusco A (2002) RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab 87(8):3941–3946

    Article  PubMed  CAS  Google Scholar 

  66. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM (2000) The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85(3):1170–1175

    Article  PubMed  CAS  Google Scholar 

  67. Unger K, Zurnadzhy L, Walch A, Mall M, Bogdanova T, Braselmann H, Hieber L, Tronko N, Hutzler P, Jeremiah S, Thomas G, Zitzelsberger H (2006) RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. Br J Cancer 94(10):1472–1477

    Article  PubMed  CAS  Google Scholar 

  68. Unger K, Zitzelsberger H, Salvatore G, Santoro M, Bogdanova T, Braselmann H, Kastner P, Zurnadzhy L, Tronko N, Hutzler P, Thomas G (2004) Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab 89(9):4272–4279

    Article  PubMed  CAS  Google Scholar 

  69. Fusco A, Chiappetta G, Hui P, Garcia-Rostan G, Golden L, Kinder BK, Dillon DA, Giuliano A, Cirafici AM, Santoro M, Rosai J, Tallini G (2002) Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol 160(6):2157–2167

    Article  PubMed  CAS  Google Scholar 

  70. Aherne ST, Smyth PC, Flavin RJ, Russell SM, Denning KM, Li JH, Guenther SM, O’Leary JJ, Sheils OM (2008) Geographical mapping of a multifocal thyroid tumour using genetic alteration analysis & miRNA profiling. Mol Cancer 7:89

    Article  PubMed  Google Scholar 

  71. Handkiewicz-Junak D, Czarniecka A, Jarzab B (2010) Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol 322(1–2):8–28

    Article  PubMed  CAS  Google Scholar 

  72. Donovan S, See W, Bonifas J, Stokoe D, Shannon KM (2002) Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2(6):507–514

    Article  PubMed  CAS  Google Scholar 

  73. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C (2003) Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 88(6):2745–2752

    Article  PubMed  CAS  Google Scholar 

  74. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–77

    Article  PubMed  CAS  Google Scholar 

  75. Di Cristofaro J, Marcy M, Vasko V, Sebag F, Fakhry N, Wynford-Thomas D, De Micco C (2006) Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol 37(7):824–830

    Article  PubMed  CAS  Google Scholar 

  76. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE (1999) Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50(4):529–535

    Article  CAS  Google Scholar 

  77. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R, Carcangiu ML, Costa J, Tallini G (2003) ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21(17):3226–3235

    Article  PubMed  CAS  Google Scholar 

  78. Abrosimov A, Saenko V, Rogounovitch T, Namba H, Lushnikov E, Mitsutake N, Yamashita S (2007) Different structural components of conventional papillary thyroid carcinoma display mostly identical BRAF status. Int J Cancer 120(1):196–200

    Article  PubMed  CAS  Google Scholar 

  79. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M (2007) Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 13(4):1161–1170

    Article  PubMed  CAS  Google Scholar 

  80. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5):2318–2326

    Article  PubMed  CAS  Google Scholar 

  81. Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, Nikiforov YE (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 94(12):4735–4741

    Article  PubMed  CAS  Google Scholar 

  82. Smallridge RC, Marlow LA, Copland JA (2009) Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer 16(1):17–44

    Article  PubMed  CAS  Google Scholar 

  83. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619

    Article  PubMed  CAS  Google Scholar 

  84. Stokoe D, Costello JF (2005) Phosphatase and tensin homologue growth suppression without phosphatase. Proc Natl Acad Sci USA 102(8):2677–2678

    Article  PubMed  CAS  Google Scholar 

  85. Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27(13):2278–2287

    Article  PubMed  CAS  Google Scholar 

  86. Frisk T, Foukakis T, Dwight T, Lundberg J, Hoog A, Wallin G, Eng C, Zedenius J, Larsson C (2002) Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer 35(1):74–80

    Article  PubMed  CAS  Google Scholar 

  87. Garcia-Rostan G, Costa AM, Pereira-Castro I, Salvatore G, Hernandez R, Hermsem MJ, Herrero A, Fusco A, Cameselle-Teijeiro J, Santoro M (2005) Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 65(22):10199–10207

    Article  PubMed  CAS  Google Scholar 

  88. Hou P, Ji M, Xing M (2008) Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer 113(9):2440–2447

    Article  PubMed  CAS  Google Scholar 

  89. Xing M (2010) Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20(7):697–706

    Article  PubMed  CAS  Google Scholar 

  90. Farrow B, Evers BM (2003) Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun 301(1):50–53

    Article  PubMed  CAS  Google Scholar 

  91. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88(1):354–357

    Article  PubMed  CAS  Google Scholar 

  92. Sahin M, Allard BL, Yates M, Powell JG, Wang XL, Hay ID, Zhao Y, Goellner JR, Sebo TJ, Grebe SK, Eberhardt NL, McIver B (2005) PPARgamma staining as a surrogate for PAX8/PPARgamma fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab 90(1):463–468

    Article  PubMed  CAS  Google Scholar 

  93. Xing M (2005) BRAF mutation in thyroid cancer. Endocr Relat Cancer 12(2):245–262

    Article  PubMed  CAS  Google Scholar 

  94. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–1360

    Article  PubMed  CAS  Google Scholar 

  95. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE (2002) PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26(8):1016–1023

    Article  PubMed  Google Scholar 

  96. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, Vasko V, El-Naggar AK, Xing M (2008) Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 93(8):3106–3116

    Article  PubMed  CAS  Google Scholar 

  97. Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T, Al-Fehaily M, Al-Sanea O, Al-Dayel F, Uddin S, Al-Kuraya KS (2008) Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab 93(2):611–618

    Article  PubMed  CAS  Google Scholar 

  98. Wu G, Mambo E, Guo Z, Hu S, Huang X, Gollin SM, Trink B, Ladenson PW, Sidransky D, Xing M (2005) Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab 90(8):4688–4693

    Article  PubMed  CAS  Google Scholar 

  99. Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158(3):987–996

    Article  PubMed  CAS  Google Scholar 

  100. Garcia-Rostan G, Tallini G, Herrero A, D’Aquila TG, Carcangiu ML, Rimm DL (1999) Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 59(8):1811–1815

    PubMed  CAS  Google Scholar 

  101. Aldred MA, Huang Y, Liyanarachchi S, Pellegata NS, Gimm O, Jhiang S, Davuluri RV, de la Chapelle A, Eng C (2004) Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J Clin Oncol 22(17):3531–3539

    Article  PubMed  CAS  Google Scholar 

  102. Baris O, Mirebeau-Prunier D, Savagner F, Rodien P, Ballester B, Loriod B, Granjeaud S, Guyetant S, Franc B, Houlgatte R, Reynier P, Malthiery Y (2005) Gene profiling reveals specific oncogenic mechanisms and signaling pathways in oncocytic and papillary thyroid carcinoma. Oncogene 24(25):4155–4161

    PubMed  CAS  Google Scholar 

  103. Finley DJ, Lubitz CC, Wei C, Zhu B, Fahey TJ 3rd (2005) Advancing the molecular diagnosis of thyroid nodules: defining benign lesions by molecular profiling. Thyroid 15(6):562–568

    Article  PubMed  CAS  Google Scholar 

  104. Oler G, Camacho CP, Hojaij FC, Michaluart P Jr, Riggins GJ, Cerutti JM (2008) Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin Cancer Res 14(15):4735–4742

    Article  PubMed  CAS  Google Scholar 

  105. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, Gauger P, Doherty G, Thompson NW, Hanash S, Koenig RJ, Nikiforov YE (2005) Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24(44):6646–6656

    Article  PubMed  CAS  Google Scholar 

  106. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, Barbi F, Avenia N, Scipioni A, Verrienti A, Tosi E, Cavaliere A, Gulino A, Filetti S, Russo D (2007) BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 92(7):2840–2843

    Article  PubMed  CAS  Google Scholar 

  107. Vriens MR, Moses W, Weng J, Peng M, Griffin A, Bleyer A, Pollock BH, Indelicato DJ, Hwang J, Kebebew E (2011) Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer 117(2):259–267. doi:10.1002/cncr.25369

    Article  PubMed  CAS  Google Scholar 

  108. Aldred MA, Ginn-Pease ME, Morrison CD, Popkie AP, Gimm O, Hoang-Vu C, Krause U, Dralle H, Jhiang SM, Plass C, Eng C (2003) Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res 63(11):2864–2871

    PubMed  CAS  Google Scholar 

  109. Arora N, Scognamiglio T, Lubitz CC, Moo TA, Kato MA, Zhu B, Zarnegar R, Chen YT, Fahey TJ 3rd (2009) Identification of borderline thyroid tumors by gene expression array analysis. Cancer 115(23):5421–5431

    Article  PubMed  CAS  Google Scholar 

  110. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  111. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  PubMed  CAS  Google Scholar 

  112. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  PubMed  CAS  Google Scholar 

  113. Ortholan C, Puissegur MP, Ilie M, Barbry P, Mari B, Hofman P (2009) MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem 16(9):1047–1061

    Article  PubMed  CAS  Google Scholar 

  114. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  PubMed  CAS  Google Scholar 

  115. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  116. Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134(9):1635–1641

    Article  PubMed  CAS  Google Scholar 

  117. Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17(1):F91–F104

    Article  PubMed  CAS  Google Scholar 

  118. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  PubMed  CAS  Google Scholar 

  119. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27(24):3300–3310

    Article  PubMed  CAS  Google Scholar 

  120. Niepmann M (2009) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8(10):1473–1477

    Article  PubMed  CAS  Google Scholar 

  121. Nikiforova MN, Chiosea SI, Nikiforov YE (2009) MicroRNA expression profiles in thyroid tumors. Endocr Pathol 20(2):85–91

    Article  PubMed  CAS  Google Scholar 

  122. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ 3rd, Scognamiglio T (2008) MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 21(9):1139–1146

    Article  PubMed  CAS  Google Scholar 

  123. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080

    Article  PubMed  CAS  Google Scholar 

  124. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93(5):1600–1608

    Article  PubMed  CAS  Google Scholar 

  125. Ricarte-Filho JC, Fuziwara CS, Yamashita AS, Rezende E, da-Silva MJ, Kimura ET (2009) Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer. Transl Oncol 2(4):236–241

    PubMed  Google Scholar 

  126. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF, Yang KD, Cheng JT, Huang CC, Liu RT (2010) miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20(5):489–494

    Article  PubMed  CAS  Google Scholar 

  127. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta G, Liu CG, Santoro M, Negrini M, Croce CM, Fusco A (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13(2):497–508

    Article  PubMed  CAS  Google Scholar 

  128. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086

    Article  PubMed  CAS  Google Scholar 

  129. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM, Fusco A (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14(3):791–798

    Article  PubMed  CAS  Google Scholar 

  130. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM, Condorelli G (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27(27):3845–3855

    Article  PubMed  CAS  Google Scholar 

  131. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647

    Article  PubMed  CAS  Google Scholar 

  132. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106(5):1502–1505

    Article  PubMed  CAS  Google Scholar 

  133. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105(20):7269–7274

    Article  PubMed  CAS  Google Scholar 

  134. Brest P, Lassalle S, Hofman V, Bordone O, Gavric Tanga V, Bonnetaud C, Moreilhon C, Rios G, Santini J, Barbry P, Svanborg C, Mograbi B, Mari B, Hofman P (2011) MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr Relat Cancer 18(6):711–719

    Article  PubMed  CAS  Google Scholar 

  135. Xiong Y, Zhang L, Holloway AK, Wu X, Su L, Kebebew E (2011) MiR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer. PLoS One 6(10):e24717. doi:10.1371/journal.pone.0024717PONE-D-11-11452 [pii]

    Article  PubMed  CAS  Google Scholar 

  136. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C (2006) A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91(9):3584–3591

    Article  PubMed  CAS  Google Scholar 

  137. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S, Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin GA, Scarpa A, Colato C, Tallini G, Santoro M, Croce CM, Fusco A (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54):7590–7595

    Article  PubMed  CAS  Google Scholar 

  138. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, Kotani K, Oikawa H, Sakurai E, Izutsu N, Kato K, Komatsu H, Ikeda K, Wakabayashi G, Masuda T (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99(2):280–286

    Article  PubMed  CAS  Google Scholar 

  139. Braun J, Hoang-Vu C, Dralle H, Huttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29(29):4237–4244

    Article  PubMed  CAS  Google Scholar 

  140. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  PubMed  CAS  Google Scholar 

  141. Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99(6):1147–1154

    Article  PubMed  CAS  Google Scholar 

  142. Pacifico F, Crescenzi E, Mellone S, Iannetti A, Porrino N, Liguoro D, Moscato F, Grieco M, Formisano S, Leonardi A (2010) Nuclear factor-{kappa}B contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J Clin Endocrinol Metab 95(3):1421–1430

    Article  PubMed  CAS  Google Scholar 

  143. Lassalle S, Hofman V, Ilie M, Bonnetaud C, Puisségur MP, Brest P, Loubatier C, Guevara N, Bordone O, Cardinaud B, Lebrigand K, Rios G, Santini J, Franc B, Mari B, Al Ghuzlan A, Vielh P, Barbry P, Hofman P (2011) Can the microRNA signature distinguish between thyroid tumors of uncertain malignant potential and other well-differentiated tumors of the thyroid gland? Endocr Relat Cancer 18(5):579–594

    Article  PubMed  CAS  Google Scholar 

  144. Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M, Schmid KW (2010) Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer 102(2):376–382

    Article  PubMed  CAS  Google Scholar 

  145. Ory C, Ugolin N, Levalois C, Lacroix L, Caillou B, Bidart JM, Schlumberger M, Diallo I, de Vathaire F, Hofman P, Santini J, Malfoy B, Chevillard S (2011) Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr Relat Cancer 18(1):193–206

    Article  PubMed  CAS  Google Scholar 

  146. Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, Fujihara M, Abe K, Hayashi T, Nakashima M, Sekine I, Yasui W, Hayashi Y, Nakachi K (2008) RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 68(17):7176–7182

    Article  PubMed  CAS  Google Scholar 

  147. Ugolin N, Ory C, Lefevre E, Benhabiles N, Hofman P, Schlumberger M, Chevillard S (2011) Strategy to find molecular signatures in a small series of rare cancers: validation for radiation-induced breast and thyroid tumors. PLoS One 6(8):e23581

    Article  PubMed  CAS  Google Scholar 

  148. Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, Mino-Kenudson M, Lauwers GY, Loda M, Fuchs CS (2005) Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 7(3):413–421

    Article  PubMed  CAS  Google Scholar 

  149. Lee HJ, Choi J, Hwang TS, Shong YK, Hong SJ, Gong G (2010) Detection of BRAF mutations in thyroid nodules by allele-specific PCR using a dual priming oligonucleotide system. Am J Clin Pathol 133(5):802–808

    Article  PubMed  CAS  Google Scholar 

  150. Orru G, Coghe F, Faa G, Pillai S, Manieli C, Montaldo C, Pilia F, Pichiri G, Piras V, Coni P (2010) Rapid multiplex real-time PCR by molecular beacons for different BRAF allele detection in papillary thyroid carcinoma. Diagn Mol Pathol 19(1):1–8

    Article  PubMed  CAS  Google Scholar 

  151. Lassalle S, Hofman V, Marius I, Gavric-Tanga V, Brest P, Havet K, Butori C, Selva E, Santini J, Mograbi B, Hofman P (2009) Assessment of morphology, antigenicity, and nucleic acid integrity for diagnostic thyroid pathology using formalin substitute fixatives. Thyroid 19(11):1239–1248

    Article  PubMed  CAS  Google Scholar 

  152. Xing M, Clark D, Guan H, Ji M, Dackiw A, Carson KA, Kim M, Tufaro A, Ladenson P, Zeiger M, Tufano R (2009) BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Oncol 27(18):2977–2982

    Article  PubMed  CAS  Google Scholar 

  153. Guo F, Hou P, Shi B (2010) Detection of BRAF mutation on fine needle aspiration biopsy specimens: diagnostic and clinical implications for papillary thyroid cancer. Acta Cytol 54(3):291–295

    Article  PubMed  Google Scholar 

  154. Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA, Johnson MR, Lloyd RV (2006) BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol 15(3):136–143

    Article  PubMed  CAS  Google Scholar 

  155. Marchetti I, Lessi F, Mazzanti CM, Bertacca G, Elisei R, Coscio GD, Pinchera A, Bevilacqua G (2009) A morpho-molecular diagnosis of papillary thyroid carcinoma: BRAF V600E detection as an important tool in preoperative evaluation of fine-needle aspirates. Thyroid 19(8):837–842

    Article  PubMed  CAS  Google Scholar 

  156. Nam SY, Han BK, Ko EY, Kang SS, Hahn SY, Hwang JY, Nam MY, Kim JW, Chung JH, Oh YL, Shin JH (2010) BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasongraphic classification: a potential guide for selection of samples for molecular analysis. Thyroid 20(3):273–279

    Article  PubMed  CAS  Google Scholar 

  157. Marchetti I, Iervasi G, Mazzanti CM, Lessi F, Tomei S, Naccarato AG, Aretini P, Alberti B, di Coscio G, Bevilacqua G (2012) Detection of the BRAF(V600E) mutation in fine needle aspiration cytology of thyroid papillary microcarcinoma cells selected by manual macrodissection: an easy tool to improve the preoperative diagnosis. Thyroid 22(3):292–298

    Article  PubMed  CAS  Google Scholar 

  158. French CA, Fletcher JA, Cibas ES, Caulfield C, Allard P, Kroll TG (2008) Molecular detection of PPAR gamma rearrangements and thyroid carcinoma in preoperative fine-needle aspiration biopsies. Endocr Pathol 19(3):166–174

    Article  PubMed  Google Scholar 

  159. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, Fagin JA, Falciglia M, Weber K, Nikiforova MN (2009) Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94(6):2092–2098

    Article  PubMed  CAS  Google Scholar 

  160. Kebebew E, Weng J, Bauer J, Ranvier G, Clark OH, Duh QY, Shibru D, Bastian B, Griffin A (2007) The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246(3):466–470; discussion 470–461

    Article  PubMed  Google Scholar 

  161. Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A, Basolo F (2008) BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93(10):3943–3949

    Article  PubMed  CAS  Google Scholar 

  162. Ito Y, Yoshida H, Maruo R, Morita S, Takano T, Hirokawa M, Yabuta T, Fukushima M, Inoue H, Tomoda C, Kihara M, Uruno T, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Miyauchi A (2009) BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J 56(1):89–97

    Article  PubMed  CAS  Google Scholar 

  163. Lupi C, Giannini R, Ugolini C, Proietti A, Berti P, Minuto M, Materazzi G, Elisei R, Santoro M, Miccoli P, Basolo F (2007) Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92(11):4085–4090

    Article  PubMed  CAS  Google Scholar 

  164. Hay ID, Hutchinson ME, Gonzalez-Losada T, McIver B, Reinalda ME, Grant CS, Thompson GB, Sebo TJ, Goellner JR (2008) Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery 144(6):980–987; discussion 987–988

    Article  PubMed  Google Scholar 

  165. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154(6):787–803

    Article  PubMed  CAS  Google Scholar 

  166. Lee J, Rhee Y, Lee S, Ahn CW, Cha BS, Kim KR, Lee HC, Kim SI, Park CS, Lim SK (2006) Frequent, aggressive behaviors of thyroid microcarcinomas in Korean patients. Endocr J 53(5):627–632

    Article  PubMed  Google Scholar 

  167. Lee X, Gao M, Ji Y, Yu Y, Feng Y, Li Y, Zhang Y, Cheng W, Zhao W (2009) Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol 16(2):240–245

    Article  PubMed  Google Scholar 

  168. Ambroziak M, Pachucki J, Stachlewska-Nasfeter E, Nauman J, Nauman A (2005) Disturbed expression of type 1 and type 2 iodothyronine deiodinase as well as titf1/nkx2-1 and pax-8 transcription factor genes in papillary thyroid cancer. Thyroid 15(10):1137–1146

    Article  PubMed  CAS  Google Scholar 

  169. Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP (1999) Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery 126(6):1070–1076; discussion 1076–1077

    Article  PubMed  CAS  Google Scholar 

  170. Kebebew E, Treseler PA, Ituarte PH, Clark OH (2001) Coexisting chronic lymphocytic thyroiditis and papillary thyroid cancer revisited. World J Surg 25(5):632–637

    Article  PubMed  CAS  Google Scholar 

  171. Vriens MR, Moses W, Weng J, Peng M, Griffin A, Bleyer A, Pollock BH, Indelicato DJ, Hwang J, Kebebew E (2010) Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer 117(2):259–267

    Article  PubMed  CAS  Google Scholar 

  172. Musholt TJ, Schonefeld S, Schwarz CH, Watzka FM, Musholt PB, Fottner C, Weber MM, Springer E, Schad A (2010) Impact of pathognomonic genetic alterations on the prognosis of papillary thyroid carcinoma. ESES vienna presentation. Langenbecks Arch Surg 395(7):877–883

    Article  PubMed  Google Scholar 

  173. Akslen LA, Varhaug JE (1995) Oncoproteins and tumor progression in papillary thyroid carcinoma: presence of epidermal growth factor receptor, c-erbB-2 protein, estrogen receptor related protein, p21-ras protein, and proliferation indicators in relation to tumor recurrences and patient survival. Cancer 76(9):1643–1654

    Article  PubMed  CAS  Google Scholar 

  174. Masago K, Asato R, Fujita S, Hirano S, Tamura Y, Kanda T, Mio T, Katakami N, Mishima M, Ito J (2009) Epidermal growth factor receptor gene mutations in papillary thyroid carcinoma. Int J Cancer 124(11):2744–2749

    Article  PubMed  CAS  Google Scholar 

  175. Ruan DT, Warren RS, Moalem J, Chung KW, Griffin AC, Shen W, Duh QY, Nakakura E, Donner DB, Khanafshar E, Weng J, Clark OH, Kebebew E (2008) Mitogen-inducible gene-6 expression correlates with survival and is an independent predictor of recurrence in BRAF(V600E) positive papillary thyroid cancers. Surgery 144(6):908–913; discussion 913–904

    Article  PubMed  Google Scholar 

  176. Jo YS, Li S, Song JH, Kwon KH, Lee JC, Rha SY, Lee HJ, Sul JY, Kweon GR, Ro HK, Kim JM, Shong M (2006) Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J Clin Endocrinol Metab 91(9):3667–3670

    Article  PubMed  CAS  Google Scholar 

  177. Brecelj E, Frkovic Grazio S, Auersperg M, Bracko M (2005) Prognostic value of E-cadherin expression in thyroid follicular carcinoma. Eur J Surg Oncol 31(5):544–548

    Article  PubMed  CAS  Google Scholar 

  178. Wiseman SM, Griffith OL, Deen S, Rajput A, Masoudi H, Gilks B, Goldstein L, Gown A, Jones SJ (2007) Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 14(8):717–727; discussion 727–719

    Article  Google Scholar 

  179. Patel KN, Maghami E, Wreesmann VB, Shaha AR, Shah JP, Ghossein R, Singh B (2005) MUC1 plays a role in tumor maintenance in aggressive thyroid carcinomas. Surgery 138(6):994–1001; discussion 1001–1002

    Article  PubMed  Google Scholar 

  180. Ghossein R, Livolsi VA (2008) Papillary thyroid carcinoma tall cell variant. Thyroid 18(11):1179–1181

    Article  PubMed  CAS  Google Scholar 

  181. Abrosimov A, Saenko V, Meirmanov S, Nakashima M, Rogounovitch T, Shkurko O, Lushnikov E, Mitsutake N, Namba H, Yamashita S (2007) The cytoplasmic expression of MUC1 in papillary thyroid carcinoma of different histological variants and its correlation with cyclin D1 overexpression. Endocr Pathol 18(2):68–75

    Article  PubMed  CAS  Google Scholar 

  182. Gao Y, Wang C, Shan Z, Guan H, Mao J, Fan C, Wang H, Zhang H, Teng W (2010) MiRNA expression in a human papillary thyroid carcinoma cell line varies with invasiveness. Endocr J 57(1):81–86

    Article  PubMed  CAS  Google Scholar 

  183. Carlomagno F, Vitagliano D, Guida T, Basolo F, Castellone MD, Melillo RM, Fusco A, Santoro M (2003) Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab 88(4):1897–1902

    Article  PubMed  CAS  Google Scholar 

  184. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, Santoro M (2006) BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98(5):326–334

    Article  PubMed  CAS  Google Scholar 

  185. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, Mandel SJ, Flaherty KT, Loevner LA, O’Dwyer PJ, Brose MS (2008) Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 26(29):4714–4719

    Article  PubMed  CAS  Google Scholar 

  186. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, Liang J, Wakely PE Jr, Vasko VV, Saji M, Rittenberry J, Wei L, Arbogast D, Collamore M, Wright JJ, Grever M, Shah MH (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27(10):1675–1684

    Article  PubMed  CAS  Google Scholar 

  187. Chen L, Shen Y, Luo Q, Yu Y, Lu H, Zhu R (2011) Response to sorafenib at a low dose in patients with radioiodine-refractory pulmonary metastases from papillary thyroid carcinoma. Thyroid 21(2):119–124

    Article  PubMed  CAS  Google Scholar 

  188. Sala E, Mologni L, Truffa S, Gaetano C, Bollag GE, Gambacorti-Passerini C (2008) BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res 6(5):751–759

    Article  PubMed  CAS  Google Scholar 

  189. King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY, Kumar R, Rusnak DW, Takle AK, Wilson DM, Hugger E, Wang L, Karreth F, Lougheed JC, Lee J, Chau D, Stout TJ, May EW, Rominger CM, Schaber MD, Luo L, Lakdawala AS, Adams JL, Contractor RG, Smalley KS, Herlyn M, Morrissey MM, Tuveson DA, Huang PS (2006) Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 66(23):11100–11105

    Article  PubMed  CAS  Google Scholar 

  190. Lee MH, Lee SE, Kim DW, Ryu MJ, Kim SJ, Kim SJ, Kim YK, Park JH, Kweon GR, Kim JM, Lee JU, De Falco V, Jo YS, Shong M (2011) Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab 96(1):E19–E30

    Article  PubMed  CAS  Google Scholar 

  191. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88(9):4393–4397

    Article  PubMed  CAS  Google Scholar 

  192. Liu D, Liu Z, Jiang D, Dackiw AP, Xing M (2007) Inhibitory effects of the mitogen-activated protein kinase kinase inhibitor CI-1040 on the proliferation and tumor growth of thyroid cancer cells with BRAF or RAS mutations. J Clin Endocrinol Metab 92(12):4686–4695

    Article  PubMed  CAS  Google Scholar 

  193. Henderson YC, Fredrick MJ, Clayman GL (2007) Differential responses of human papillary thyroid cancer cell lines carrying the RET/PTC1 rearrangement or a BRAF mutation to MEK1/2 inhibitors. Arch Otolaryngol Head Neck Surg 133(8):810–815

    Article  PubMed  Google Scholar 

  194. Liu D, Xing M (2008) Potent inhibition of thyroid cancer cells by the MEK inhibitor PD0325901 and its potentiation by suppression of the PI3K and NF-kappaB pathways. Thyroid 18(8):853–864

    Article  PubMed  Google Scholar 

  195. Jin N, Jiang T, Rosen DM, Nelkin BD, Ball DW (2009) Dual inhibition of mitogen-activated protein kinase kinase and mammalian target of rapamycin in differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab 94(10):4107–4112

    Article  PubMed  CAS  Google Scholar 

  196. Frezzetti D, Menna MD, Zoppoli P, Guerra C, Ferraro A, Bello AM, Luca PD, Calabrese C, Fusco A, Ceccarelli M, Zollo M, Barbacid M, Lauro RD, Vita GD (2011) Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 30(3):275–286

    Article  PubMed  CAS  Google Scholar 

  197. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K (2008) Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 283(48):33394–33405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hofman MD, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bozec, A., Ilie, M., Hofman, P. (2013). Usefulness of Molecular Biology in Follicular-Derived Thyroid Tumors: From Translational Research to Clinical Practice. In: Pfeffer, U. (eds) Cancer Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5842-1_12

Download citation

Publish with us

Policies and ethics