Skip to main content

Advertisement

Log in

MicroRNA Expression Profiles in Thyroid Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) constitute a recently identified class of small endogenous noncoding RNAs that act as negative regulators of the protein-coding gene expression and may impact cell differentiation, proliferation and survival, i.e., all fundamental cellular processes implicated in carcinogenesis. miRNA expression is deregulated in many types of human cancers, including thyroid cancer. The purpose of this review is to summarize the existing findings of miRNA deregulation in thyroid tumors and its potential role in thyroid cancer biology and molecular diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–80, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–97, 2004. doi:10.1016/S0092-8674(04)00045-5.

    Article  PubMed  CAS  Google Scholar 

  3. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–706, 2005. doi:10.1093/nar/gki567.

    Article  PubMed  CAS  Google Scholar 

  4. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–101, 2006. doi:10.1038/nsmb1167.

    Article  PubMed  CAS  Google Scholar 

  5. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 23(20):4051–60, 2004. doi:10.1038/sj.emboj.7600385.

    Article  PubMed  CAS  Google Scholar 

  6. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–9, 2003. doi:10.1038/nature01957.

    Article  PubMed  CAS  Google Scholar 

  7. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 303(5654):95–8, 2004. doi:10.1126/science.1090599.

    Article  PubMed  CAS  Google Scholar 

  8. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–6, 2003. doi:10.1101/gad.1158803.

    Article  PubMed  CAS  Google Scholar 

  9. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–60, 2002. doi:10.1126/science.1073827.

    Article  PubMed  CAS  Google Scholar 

  10. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–69, 2006. doi:10.1038/nrc1840.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 120(5):635–47, 2005. doi:10.1016/j.cell.2005.01.014.

    Article  PubMed  CAS  Google Scholar 

  12. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102(50):18081–6, 2005. doi:10.1073/pnas.0506216102.

    Article  PubMed  CAS  Google Scholar 

  13. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14(3):791–8, 2007. doi:10.1677/ERC-07-0129.

    Article  PubMed  CAS  Google Scholar 

  14. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–9, 2005. doi:10.1073/pnas.0506654102.

    Article  PubMed  CAS  Google Scholar 

  15. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–66, 2006. doi:doi:10.1038/nrc1997.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12, 2006.

    Article  PubMed  Google Scholar 

  17. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–81, 2006. doi:10.1158/0008-5472.CAN-05-3632.

    Article  PubMed  CAS  Google Scholar 

  18. Fraga MF, Esteller M. Towards the human cancer epigenome: a first draft of histone modifications. Cell cycle (Georgetown, Tex) 4(10):1377–81, 2005.

    CAS  Google Scholar 

  19. Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 122(3):699–704, 2008. doi:10.1002/ijc.23153.

    Article  PubMed  CAS  Google Scholar 

  20. Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282(4):2130–4, 2007. doi:10.1074/jbc.C600252200.

    Article  PubMed  CAS  Google Scholar 

  21. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 169(5):1812–20, 2006. doi:10.2353/ajpath.2006.060480.

    Article  PubMed  CAS  Google Scholar 

  22. Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 67(5):2345–50, 2007. doi:10.1158/0008-5472.CAN-06-3533.

    Article  PubMed  CAS  Google Scholar 

  23. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102(52):19075–80, 2005. doi:10.1073/pnas.0509603102.

    Article  PubMed  CAS  Google Scholar 

  24. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility. J Clin Endocrinol Metab 93(5):1600–8, 2008. doi:10.1210/jc.2007-2696.

    Article  PubMed  CAS  Google Scholar 

  25. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13(2):497–508, 2006. doi:10.1677/erc.1.01209.

    Article  PubMed  CAS  Google Scholar 

  26. Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, et al. Differential Expression of miRNAs in Papillary Thyroid Carcinoma Compared to Multinodular Goiter Using Formalin Fixed Paraffin Embedded Tissues. Endocr Pathol 18(3):163–73, 2007. doi:10.1007/s12022-007-0023-7.

    Article  PubMed  CAS  Google Scholar 

  27. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54):7590–5, 2007. doi:10.1038/sj.onc.1210564.

    Article  PubMed  CAS  Google Scholar 

  28. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91(9):3584–91, 2006. doi:10.1210/jc.2006-0693.

    Article  PubMed  CAS  Google Scholar 

  29. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ III, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 21(9):1139–46, 2008. doi:10.1038/modpathol.2008.105.

    Article  PubMed  CAS  Google Scholar 

  30. Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and validation of total RNA extraction methods for MicroRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–11, 2008. doi:10.2353/jmoldx.2008.070153.

    Article  PubMed  CAS  Google Scholar 

  31. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 435(7043):834–8, 2005. doi:10.1038/nature03702.

    Article  PubMed  CAS  Google Scholar 

  32. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8(1):83–95, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–7, 2003.

    PubMed  CAS  Google Scholar 

  34. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–22, 2006. doi:10.1097/01.pas.0000176432.73455.1b.

    Article  PubMed  Google Scholar 

  35. Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93(10):3943–9, 2008. doi:10.1210/jc.2008-0607.

    Article  PubMed  CAS  Google Scholar 

  36. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 12(2):245–62, 2005. doi:10.1677/erc.1.0978.

    Article  PubMed  CAS  Google Scholar 

  37. Cahill S, Smyth P, Denning K, Flavin R, Li J, Potratz A, et al. Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 6:21, 2007. doi:10.1186/1476-4598-6-21.

    Article  PubMed  Google Scholar 

  38. Cahill S, Smyth P, Finn SP, Denning K, Flavin R, O'Regan EM, et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 5:70, 2006. doi:10.1186/1476-4598-5-70.

    Article  PubMed  Google Scholar 

  39. Natali PG, Berlingieri MT, Nicotra MR, Fusco A, Santoro E, Bigotti A, et al. Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer Res 55(8):1787–91, 1995.

    PubMed  CAS  Google Scholar 

  40. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32):23716–24, 2007. doi:10.1074/jbc.M701805200.

    Article  PubMed  CAS  Google Scholar 

  41. Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68(8):2773–80, 2008. doi:10.1158/0008-5472.CAN-07-6754.

    Article  PubMed  CAS  Google Scholar 

  42. Mazzaferri EL. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am J Med 93(4):359–62, 1992. doi:10.1016/0002-9343(92)90163-6.

    Article  PubMed  CAS  Google Scholar 

  43. Salvatore G, Giannini R, Faviana P, Caleo A, Migliaccio I, Fagin JA, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89(10):5175–80, 2004. doi:10.1210/jc.2003-032221.

    Article  PubMed  CAS  Google Scholar 

  44. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89(6):2867–72, 2004. doi:10.1210/jc.2003-032050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina N. Nikiforova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforova, M.N., Chiosea, S.I. & Nikiforov, Y.E. MicroRNA Expression Profiles in Thyroid Tumors. Endocr Pathol 20, 85–91 (2009). https://doi.org/10.1007/s12022-009-9069-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9069-z

Keywords

Navigation