Skip to main content

Human rDNA Genes: Identification of Four Fractions, Their Functions and Nucleolar Location

  • Chapter
  • First Online:
Proteins of the Nucleolus

Abstract

In this chapter we present new data, mostly ours, on the copy number of ribosomal genes (genes for rRNA that form multicopy tandem repeats termed rDNA) in individual human genomes, and their functional inequality. Four fractions of rDNA repeats are characterized in human peripheral blood lymphocytes: (1) active and (2) potentially active (‘poised’) copies, both characterized by an ‘open’ conformation of the transcribed region, and firmly bound to the nuclear matrix; (3) inactive, slightly methylated copies, and (4) inactive copies, intensively methylated in the transcribed region, which are in a ‘closed’ conformation. The rDNA repeats of fractions 3 and 4 are loosely bound to the matrix and can be easily extracted from the nucleus. Proteins tightly bound to the rDNA transcribed region were for the first time shown in the potentially active rDNA fraction. The function of these proteins may be the preservation of the ‘open’ state of the fraction of potentially active rRNA genes when they are not involved in transcription. We also present our results of the quantitation of genomic dosage of active and potentially active rRNA genes in individual human genomes. These data have revealed some phenotypic manifestations of genomic dosage of active/poised rRNA gene fractions in healthy growth, and its impact on pathogenesis of a number of heritable and nonheritable diseases. The potential application of measuring the genomic dosage of active/poised rRNA genes in practical medico-genetic consulting is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Bross K, Krone W (1972) On the number of ribosomal RNA genes in man. Humangenetik 14:137–141

    Article  PubMed  CAS  Google Scholar 

  • Bross K, Dittes H, Krone W, Schmid M, Vogel W (1973) Biochemical and cytogenetic studies on the nucleolus organizing regions (NOR) of man. I. Comparison of trisomy 21 with balanced translocations t(DqGq). Humangenetik 20:223–229

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Belmont AS, Huang S (2004) Upstream binding factor association induces large-scale chromatin decondensation. Proc Natl Acad Sci U S A 101:15106–15111

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Sogo JM, Ryan CA (1992) Ribosomal gene clusters are uniquely proportioned between open and closed chromatin structures in both tomato leaf cells and exponentially growing suspension cultures. Proc Natl Acad Sci U S A 89:5256–5260

    Article  PubMed  CAS  Google Scholar 

  • Crespi BJ, Thiselton DL (2011) Comparative immunogenetics of autism and schizophrenia. Genes Brain Behav 10:689–701

    Article  PubMed  CAS  Google Scholar 

  • Dante R, Percy ME, Baldini A et al (1992) Methylation of the 5′ flanking sequences of the ribosomal DNA in human cell lines and in a human-hamster hybrid cell line. J Cell Biochem 50:357–362

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Pasquinelli G, O’Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54:131–145

    Article  PubMed  CAS  Google Scholar 

  • Dittes H, Krone W, Bross K, Schmid M, Vogel W (1975) Biochemical and cytogenetic studies on the nucleolus organizing regions (NOR) of man. II. A family with the 15/21 translocation. Humangenetik 26:47–59

    Article  PubMed  CAS  Google Scholar 

  • Evans HJ, Buckland RA, Pardue ML (1974) Location of the genes coding for 18S and 28S ribosomal RNA in the human genome. Chromosoma 48:405–426

    Article  CAS  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383

    Article  PubMed  CAS  Google Scholar 

  • Gaubatz J, Prashad N, Cutler RG (1976) Ribosomal RNA gene dosage as a function of tissue and age for mouse and human. Biochim Biophys Acta 418:358–375

    Article  PubMed  CAS  Google Scholar 

  • Gencheva M, Anachkova B, Russev G (1996) Mapping the sites of initiation of DNA replication in rat and human rRNA genes. J Biol Chem 271:2608–2614

    Article  PubMed  CAS  Google Scholar 

  • Gillespie D, Spiegelman SA (1965) Quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12:829–842

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Delorme R, Fauchereau F, Durand CM et al (2009) An investigation of ribosomal protein L10 gene in autism spectrum disorders. BMC Med Genet 10:7

    Article  PubMed  Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Article  PubMed  CAS  Google Scholar 

  • Gustafson TA, Taylor A, Kedes L (1989) DNA bending is induced by a transcription factor that interacts with the human c-FOS and alpha-actin promoters. Proc Natl Acad Sci U S A 86:2162–2166

    Article  PubMed  CAS  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398

    Article  PubMed  CAS  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Hubbell HR (1985) Silver staining as an indicator of active ribosomal genes. Stain Technol 60:285–294

    PubMed  CAS  Google Scholar 

  • Jacob ST (1995) Regulation of ribosomal gene transcription. Biochem J 306:617–626

    PubMed  CAS  Google Scholar 

  • Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C et al (2006) Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 11:1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Long EO, David IB (1980) Repeated genes in eucaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  CAS  Google Scholar 

  • Lyapunova NA, Veiko NN (2010) Ribosomal genes in the human genome: identification of four fractions, their organization in the nucleolus and metaphase chromosomes. Russ J Genet 46:1070–1073

    Article  CAS  Google Scholar 

  • Lyapunova NA, Egolina NA, Mkhitarova EV, Victorov VV (1988) Interindividual and intercellular differences in ribosomal genes’ total activity detected by Ag-stainig of nucleolar organizing regions of acrocentric human chromosomes. Genetika 24:897–902 (Translated from Genetika 24:1289–1298)

    Google Scholar 

  • Lyapunova NA, Kravets-Mandron IA, Tsvetkova TG (1998) Cytogenetics of the nucleolus organizer regions (NORs) of human chromosomes: the identification, individual variation, and chromosome distribution of four morphological functional variants of NORs. Russ J Genet 34:1095–1102

    CAS  Google Scholar 

  • Lyapunova NA, Egolina NA, Tsvetkova TG, Veiko NN, Kravets-Mandron IA, Gromova EV, Kosyakova NV, Viktorov VV, Malinovskaya TN (2000) Ribosomal genes in the human genome: contribution to genetic individuality and phenotypic manifestation of gene dosage. Vestn Ross Akad Med Nauk (Russ) 5:19–23

    Google Scholar 

  • Lyapunova NA, Egolina NA, Tsvetkova TG, Veiko NN, Kravets-Mandron IA, Gromova EV, Kosyakova NV, Viktorov VV (2001) Cytogenetics of the nucleolus organizer regions (NORs) of human chromosomes: results of molecular and cytogenetic analyses. Biol Membrany Kletki (Russ) 18:189–199

    CAS  Google Scholar 

  • Malinovskaya EM, Smirnova TD, Egolina NA et al (2008) Changes in human ribosomal genes ensemble with ageing. Med Genet 7:10–16

    CAS  Google Scholar 

  • Markovic VD, Worton RG, Berg JM (1978) Evidence for inheritance of silver-stained nucleolus organizer regions. Hum Genet 41:181–187

    Article  PubMed  CAS  Google Scholar 

  • Melese Т, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  PubMed  CAS  Google Scholar 

  • Mikelsaar AV, Schwarzacher HG (1978) Comparison of silver staining of nucleolus organizer regions in human lymphocytes and fibroblasts. Hum Genet 42:291–299

    Article  PubMed  CAS  Google Scholar 

  • Miller DA, Dev YG, Tantravahi R et al (1976) Expression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–243

    Article  PubMed  CAS  Google Scholar 

  • Mosgoeller W, Schofer C, Wesierska-Gadek J, Steiner M, Mutter M, Wachtler F (1998) Ribosomal gene transcription is organized in foci within nucleolar components. Histochem Cell Biol 109:111–118

    Article  PubMed  CAS  Google Scholar 

  • Okamoto E, Miller DA, Erlanger BF, Miller OJ (1981) Polymorphism of 5-methylcytosine-rich DNA in human acrocentric chromosomes. Hum Genet 58:255–259

    Article  PubMed  CAS  Google Scholar 

  • Park HC, De Boni U (1999) Dynamics of structure-function relationships in interphase nuclei. Life Sci 64:1703–1718

    Article  PubMed  CAS  Google Scholar 

  • Porokhovnik LN, Viktorov VV, Egolina NA, Tsvetkova TG, Lyapunova NA (2011) Cluster size polymorphism of active human ribosomal genes and simulation of the conditions of its stability through generations. Russ J Genet 47:1479–1486

    Article  CAS  Google Scholar 

  • Raska I, Dundr M, Koherna K, Melcak I, Risueno MC, Torok I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components? A critical appraisal. J Struct Biol 114:1–22

    Article  PubMed  CAS  Google Scholar 

  • Ritossa FM (1968) Unstable redurdancy of genes for ribosomal RNA. Proc Natl Acad Sci U S A 60:509–516

    Article  PubMed  CAS  Google Scholar 

  • Ritossa FM (1976) The bobbed locus. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1b. Academic, New York

    Google Scholar 

  • Ritossa FM, Atwood KC, Spiegelman SA (1966) Molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54:819–834

    PubMed  CAS  Google Scholar 

  • Scherberg NH, Refetoff S (1973) Hybridization of RNA labelled with 125 I to high specific activity. Nat New Biol 242:142–145

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  PubMed  CAS  Google Scholar 

  • Sozanskii OA, Terekhov SM (1983) Compartive study of nucleolus organizing regions of metaphase chromosomes in human blood lymphocytes and skin fibroblasts. Bull Exp Biol Med 95:849–852

    Article  Google Scholar 

  • Stefanovsky V, Moss T (2006) Regulation of rRNA synthesis in human and mouse cells is not determined by changes in active gene count. Cell Cycle 5:735–739

    Article  PubMed  CAS  Google Scholar 

  • Vandelaer M, Thiry M, Goessens G (1993) Ultrastructural distribution of DNA within the ring-shaped nucleolus of human resting T lymphocytes. Exp Cell Res 205:430–432

    Article  PubMed  CAS  Google Scholar 

  • Veiko NN (2001) Structural and functional organization of human ribosomal repeats, doctoral (Biol.) dissertation, Moscow State Science Center Russian Academy of Medical Science (Russia), Moscow

    Google Scholar 

  • Veiko NN, Liapunova NA, Bogush AI, Tsvetkova TG, Gromova EV (1996) Ribosomal gene number in individual human genomes: data from comparative molecular and cytogenetic analysis. Mol Biol 30:641–647

    Article  Google Scholar 

  • Veiko NN, Lyapunova NA, Bogush AI, Spitkovskii DM (1998) Proteins are tightly bound with transcribed regions of human ribosomal genes. Mol Biol (Mosc) 32:518–522

    CAS  Google Scholar 

  • Veiko NN, Lyapunova NA, Kovalev LI et al (2000a) Proteins tightly bound with rDNA transcribed regions in nuclei, nucleoids, and nucleoproteins of human lymphocytes: isolation and characterization of candidate proteins. Mol Biol (Mosc) 34:250–255

    Article  CAS  Google Scholar 

  • Veiko NN, Kovalev LI, Lyapunova NA, Spitkovskii DM (2000b) Content of proteins tightly bound to rDNA transcribed regions in human genome varies in different cells and probably correlates with their physiological activity, in Genom cheloveka (Human Genome), collection of reports of scientific council, 2000, Moscow, pp 13–14

    Google Scholar 

  • Veiko NN, Lyapunova NA, Kosyakova NV, Spitkovskii DM (2001) Variation in chromatin structure of the rDNA transcribed region in human peripheral blood lymphocytes. Mol Biol 35:45–55

    Article  CAS  Google Scholar 

  • Veiko NN, Egolina NA, Radzivil GG, Nurbaev SD, Kosyakova NV, Shubaeva NO, Lyapunova NA (2003) Quantitation of repetitive sequences in human genomic DNA and detection of an elevated ribosomal repeat copy number in schizophrenia: the results of molecular and cytogenetic analyses. Mol Biol (Mosc) 37:349–357

    Article  CAS  Google Scholar 

  • Veiko NN, Terekhov SM, Shubaeva NO, Simirnova TD, Ivanova SM, Egolina NA, Tsvetkova TG, Spitkovskii DM, Liapunova NA (2005) Early and late responses to oxidative stress in human dermal fibroblasts of healthy donors and rheumatoid arthritis patients. Relationship between the cell death rate and the genomic dosage of active ribosomal genes. Mol Biol (Mosc) 39:264–275

    Google Scholar 

  • Vintermist A, Böhm S, Sadeghifar F, Louvet E, Mansén A, Percipalle P, Ostlund Farrants AK (2011) The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. PLoS One 6:e19184

    Article  PubMed  CAS  Google Scholar 

  • Wachtler F, Hartung M, Devictor M, Wiengant J, Stahl A, Schwarzacher HG (1989) Ribosomal DNA is located and transcribed in the dense fibrillar component of human Sertoli cell nucleoli. Exp Cell Res 184:61–71

    Article  PubMed  CAS  Google Scholar 

  • Wachtler F, Mosgöller W, Schwarzacher HG (1990a) Electron microscopic in situ hybridization and autoradiography: localization and transcription of rDNA in human lymphocyte nucleoli. Exp Cell Res 187:346–348

    Article  PubMed  CAS  Google Scholar 

  • Wachtler F, Roubicek C, Schedle A, Mosgöller W, Bretis G, Schwarzacher HG (1990b) Nucleolus organizer regions in human lymphocytes as studied with premature chromosome condensation. Hum Genet 84:244–248

    Article  PubMed  CAS  Google Scholar 

  • Warburton D, Henderson AS (1979) Sequential silver staining and hybridization in situ on nucleolus organizing regions in human cells. Cytogenet Cell Genet 24:168–175

    Article  PubMed  CAS  Google Scholar 

  • Young BD, Hell A, Birnie GD (1976) A new estimate of human ribosomal gene number. Biochim Biophys Acta 454:539–548

    Article  PubMed  CAS  Google Scholar 

  • Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev N. Porokhovnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lyapunova, N.A., Veiko, N.N., Porokhovnik, L.N. (2013). Human rDNA Genes: Identification of Four Fractions, Their Functions and Nucleolar Location. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_5

Download citation

Publish with us

Policies and ethics