Skip to main content

Hordeum vulgare

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants
  • 3987 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abebe T, Skadsen RW, Kaeppler HF (2005) A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta 221(2):170–183

    Article  PubMed  CAS  Google Scholar 

  • AbuMweis SS, Jew S, Ames NP (2010) β-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr 64(12):1472–1480

    Article  PubMed  CAS  Google Scholar 

  • Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_BARLEY.pdf

  • Alminger M, Eklund-Jonsson C (2008) Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humans. Eur J Nutr 47(6):294–300

    Article  PubMed  CAS  Google Scholar 

  • Anand BS, Piris J, Truelove SC (1978) The role of various cereals in coeliac disease. Q J Med 47(185):101–110

    PubMed  CAS  Google Scholar 

  • Araki Y, Fujiyama Y, Andoh A, Koyama S, Kanauchi O, Bamba T (2000) The dietary combination of germinated barley foodstuff plus Clostridium butyricum suppresses the dextran sulfate sodium-induced experimental colitis in rats. Scand J Gastroenterol 35(10):1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Armentia A, Sanchez-Monge R, Gomez L, Barber D, Salcedo G (1993) In vivo allergenic activities of eleven purified members of a major allergen family from wheat and barley flour. Clin Exp Allergy 23(5):410–415

    Article  PubMed  CAS  Google Scholar 

  • Armentia A, Rodríguez R, Callejo A, Martín-Esteban M, Martín-Santos JM, Salcedo G, Pascual C, Sánchez-Monge R, Pardo M (2002) Allergy after ingestion or inhalation of cereals involves similar allergens in different ages. Clin Exp Allergy 32(8):1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Astwood JD, Mohapatra SS, Ni H, Hill RD (1995) Pollen allergen homologues in barley and other crop species. Clin Exp Allergy 25:66–72

    Article  PubMed  CAS  Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17(4):499–510

    Article  PubMed  CAS  Google Scholar 

  • Behall KM, Scholfield DJ, Hallfrisch J (2004a) Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr 80(5):1185–1193

    PubMed  CAS  Google Scholar 

  • Behall KM, Scholfield DJ, Hallfrisch J (2004b) Lipids significantly reduced by diets containing barley in moderately hypercholesterolemic men. J Am Coll Nutr 23(1):55–62

    PubMed  CAS  Google Scholar 

  • Bellido GG, Beta T (2009) Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley. J Agric Food Chem 57(3):1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Benedet JA, Umeda H, Shibamoto T (2007) Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples. J Agric Food Chem 55(14):5499–5504

    Article  PubMed  CAS  Google Scholar 

  • Beunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81(7):653–660

    Article  Google Scholar 

  • Bhatty RS (1999) The potential of hull-less barley. Cereal Chem 76(5):589–599

    Article  CAS  Google Scholar 

  • Boisen S (1983) Comparative physico-chemical studies on purified trypsin inhibitors from the endosperm of barley, rye, and wheat. Z Lebensm Unters Forsch 176(6):434–439

    Article  PubMed  CAS  Google Scholar 

  • Bourdon I, Yokoyama W, Davis P, Hudson C, Backus R, Richter D, Knuckles B, Schneeman BO (1999) Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan. Am J Clin Nutr 69(1):55–63

    PubMed  CAS  Google Scholar 

  • Bown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London, 424 pp

    Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1  →  3,1    →  4)-β-D-glucans as functional food ingredients. J Cereal Sci 42:1–13

    Article  CAS  Google Scholar 

  • Brezinová Belcredi N, Ehrenbergerová J, Fiedlerová V, Bĕláková S, Vaculová K (2010) Antioxidant vitamins in barley green biomass. J Agric Food Chem 58(22):11755–11761

    Article  PubMed  CAS  Google Scholar 

  • Briggs DE (1978) Barley. Chapman and Hall, London, 612 pp

    Book  Google Scholar 

  • Buchala AJ (1973) An arabinogalacto(4-O-methylglucurono)xylan from the leaves of Hordeum vulgare. Phytochemistry 12(6):1373–1376

    Article  CAS  Google Scholar 

  • Cárdenas A, Kelly CP (2002) Celiac sprue. Semin Gastrointest Dis 13(4):232–244

    PubMed  Google Scholar 

  • Carrillo L, Herrero I, Cambra I, Sánchez-Monge R, Diaz I, Martinez M (2011) Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms. Plant Physiol Biochem 49(10):1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Casiraghi MC, Garsetti M, Testolin G, Brighenti F (2006) Post-prandial responses to cereal products enriched with barley beta-glucan. J Am Coll Nutr 25(4):313–320

    PubMed  CAS  Google Scholar 

  • Chen SL, Li DZ ZGH, Wu ZL, Lu SL, Liu L, Wang ZP, Sun BX, Zhu ZD, Xia N, Jia LZ, Guo ZH, Chne WL, Chen X, Yang G, Phillips SM, Stapleton C, Soreng RJ, Aiken SG, Tzvelev NN, Peterson PM, REnvoize SA, Okonova MV, Ammann K (2000) Poaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22, Poaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Chevallier A (1996) The encyclopedia of medicinal plants. Dorling Kindersley, London, 336 pp

    Google Scholar 

  • Chillo S, Ranawana DV, Pratt M, Henry CJ (2011) Glycemic response and glycemic index of semolina spaghetti enriched with barley β-glucan. Nutrition 27(6):653–658

    Article  PubMed  CAS  Google Scholar 

  • Ciclitira PJ, King AL, Fraser JS (2001) AGA technical review on celiac sprue. American Gastroenterological Association. Gastroenterology 120(6):1526–1540

    Article  PubMed  CAS  Google Scholar 

  • Clayton WD, Vorontsova MS, Harman KT, Williamson H (2006) GrassBase – The Online World Grass Flora. http://www.kew.org/data/grasses-db.html

  • Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M (2011) World checklist of Poaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. http://apps.kew.org/wcsp/

  • Colgrave ML, Goswami H, Howitt CA, Tanner GJ (2012) What is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer. J Proteome Res 11(1):386–396

    Article  PubMed  CAS  Google Scholar 

  • Conde E, Moure A, Domínguez H, Parajó JC (2008) Fractionation of antioxidants from autohydrolysis of barley husks. J Agric Food Chem 56(22):10651–10659

    Article  PubMed  CAS  Google Scholar 

  • Cramer AC, Mattinson DS, Fellman JK, Baik BK (2005) Analysis of volatile compounds from various types of barley cultivars. J Agric Food Chem 53(19):7526–7531

    Article  PubMed  CAS  Google Scholar 

  • Cremer L, Herold A, Avram D, Szegli G (1996) Inhibitory capacity of some fractions isolated from a green barley extract upon TNF alpha production by the cells of the THP-1 human monocytes line. Roum Arch Microbiol Immunol 55(4):285–294

    PubMed  CAS  Google Scholar 

  • Cremer L, Herold A, Avram D, Szegli G (1998) A purified green barley extract with modulatory properties upon TNF alpha and ROS released by human specialised cells isolated from RA patients. Roum Arch Microbiol Immunol 57(3–4):231–242

    PubMed  CAS  Google Scholar 

  • Duke JA, Ayensu ES (1985) Medicinal plants of China, vols 1 and 2. Reference Publications, Inc. Algonac, 705 pp

    Google Scholar 

  • Dvorakova M, Moreira MM, Dostalek P, Skulilova Z, Guido LF, Barros AA (2008) Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography-ultraviolet detection-electrospray ionization mass spectrometry. J Chromatogr A 1189(1–2):398–405

    PubMed  CAS  Google Scholar 

  • Ehrenbergerová J, Brezinová Belcredi N, Kopácek J, Melisová L, Hrstková P, Macuchová S, Vaculová K, Paulícková I (2009) Antioxidant enzymes in barley green biomass. Plant Foods Hum Nutr 64(2):122–128

    Article  PubMed  CAS  Google Scholar 

  • Erb N, Zinsmeister HD, Lehmann G, Nahrstedt A (1979) A new cyanogenic glycoside from Hordeum vulgare. Phytochemistry 18(9):1515–1517

    Article  CAS  Google Scholar 

  • Etoh H, Murakami K, Yogoh T, Ishikawa H, Fukuyama Y, Tanaka H (2004) Anti-oxidative compounds in barley tea. Biosci Biotechnol Biochem 68(12):2616–2618

    Article  PubMed  CAS  Google Scholar 

  • Falk J, Krahnstöver A, van der Kooij TA, Schlensog M, Krupinska K (2004) Tocopherol and tocotrienol accumulation during development of caryopses from barley (Hordeum vulgare L.). Phytochemistry 65(22):2977–2985

    Article  PubMed  CAS  Google Scholar 

  • FAO (2010) FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fasano A, Catassi C (2001) Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology 120(3):636–651

    Article  PubMed  CAS  Google Scholar 

  • Ferreres F, Krsková Z, Gonçalves RF, Valentão P, Pereira JA, Dusek J, Martin J, Andrade PB (2009) Free water-soluble phenolics profiling in barley (Hordeum vulgare L.). J Agric Food Chem 57(6):2405–2409

    Article  PubMed  CAS  Google Scholar 

  • Fraser JS, Ciclitira PJ (2001) Pathogenesis of coeliac disease: implications for treatment. World J Gastroenterol 7:772–776

    PubMed  CAS  Google Scholar 

  • Fukuda M, Kanauchi O, Araki Y, Andoh A, Mitsuyama K, Takagi K, Toyonaga A, Sata M, Fujiyama Y, Fukuoka M, Matsumoto Y, Bamba T (2002) Prebiotic treatment of experimental colitis with germinated barley foodstuff: a comparison with probiotic or antibiotic treatment. Int J Mol Med 9(1):65–70

    PubMed  CAS  Google Scholar 

  • Garcia-Casado G, Crespo JF, Rodriguez J, Salcedo G (2001) Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens. J Allergy Clin Immunol 108:647–649

    Article  PubMed  CAS  Google Scholar 

  • Gibreel A, Sandercock JR, Lan J, Goonewardene LA, Zijlstra RT, Curtis JM, Bressler DC (2009) Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl Environ Microbiol 75(5):1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Giriwono PE, Shirakawa H, Hokazono H, Goto T, Komai M (2011) Fermented barley extract supplementation maintained antioxidative defense suppressing lipopolysaccharide-induced inflammatory liver injury in rats. Biosci Biotechnol Biochem 75(10):1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Goldammer T (2008) Brewer’s handbook: the complete book to Brewing Beer, 2nd edn. Apex Publishers, Clifton, 496 pp

    Google Scholar 

  • Gomez-Macpherson H (2001) Hordeum vulgare. EcoPort Entity 1232, http://www.ecoport.org.Accessed18Nov2011

  • Grando S (2005) Food uses of barley. Paper presented at the 12th Australian barley technical symposium, Hobart, Tasmania, 11–14 Sept 2005

    Google Scholar 

  • Granfeldt Y, Liljeberg H, Drews A, Newman R, Björck I (1994) Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 59(5):1075–1082

    PubMed  CAS  Google Scholar 

  • Grieve M (1971) A modern herbal, 2nd edn. Penguin/Dover Publications, New York, 919 pp

    Google Scholar 

  • Grunwald I, Heinig I, Thole HH, Neumann D, Kahmann U, Kloppstech K, Gau AE (2007) Purification and characterisation of a jacalin-related, coleoptile specific lectin from Hordeum vulgare. Planta 226(1):225–234

    Article  PubMed  CAS  Google Scholar 

  • Hakkarainen RV, Työppönen JT, Hassan S, Bengtsson SG, Jönsson SR, Lindberg PO (1984) Biopotency of vitamin E in barley. Br J Nutr 52(2):335–349

    Article  PubMed  CAS  Google Scholar 

  • Hapke HJ, Strathmann W (1995) Pharmacological effects of hordenine. Dtsch Tierarztl Wochenschr 102(6):228–232 (in German)

    PubMed  CAS  Google Scholar 

  • Hernanz D, Nuñez V, Sancho AI, Faulds CB, Williamson G, Bartolomé B, Gómez-Cordovés C (2001) Hydro­xycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. J Agric Food Chem 49(10):4884–4888

    Article  PubMed  CAS  Google Scholar 

  • Hill AF (1952) Economic botany, 2nd edn. McGraw-Hill Book Co, New York, 560 pp

    Google Scholar 

  • Hoang MH, Houng SJ, Jun HJ, Lee JH, Choi JW, Kim SH, Kim YR, Lee SJ (2011) Barley intake induces bile acid excretion by reduced expression of intestinal ASBT and NPC1L1 in C57BL/6J mice. J Agric Food Chem 59(12):6798–6805

    Article  PubMed  CAS  Google Scholar 

  • Hokazono H, Omori T, Yamamoto T, Akaoka I, Ono K (2010) Effects of a fermented barley extract on subjects with slightly high serum uric acid or mild hyperuricemia. Biosci Biotechnol Biochem 74(4):828–834

    Article  PubMed  CAS  Google Scholar 

  • Holtekjølen AK, Kinitz C, Knutsen SH (2006a) Flavanol and bound phenolic acid contents in different barley varieties. J Agric Food Chem 54(6):2253–2260

    Article  PubMed  CAS  Google Scholar 

  • Holtekjølen AK, Uhlen A, Brathen E, Sahlstrom S, Knutsen S (2006b) Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem 94(3):348–358

    Article  CAS  Google Scholar 

  • Hong H, Jai Maeng W (2004) Effects of malted barley extract and banaba extract on blood glucose levels in genetically diabetic mice. J Med Food 7(4):487–490

    Article  PubMed  Google Scholar 

  • Izydorczyk MS, Storsley J, Labossiere D, MacGregor AW, Rossnagel BG (2000) Variation in total and soluble beta-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. J Agric Food Chem 48(4):982–989

    Article  PubMed  CAS  Google Scholar 

  • Jeong JB, Hong SC, Jeong HJ (2009) 3,4-Dihydro­xybenzaldehyde purified from the barley seeds (Hordeum vulgare) inhibits oxidative DNA damage and apoptosis via its antioxidant activity. Phytomedicine 16(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Jeong HJ, Jeong JB, Hsieh CC, Hernández-Ledesma B, de Lumen BO (2010) Lunasin is prevalent in barley and is bioavailable and bioactive in in vivo and in vitro studies. Nutr Cancer 62(8):1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Jood S, Kalra S (2001) Chemical composition and nutritional characteristics of some hull less and hulled barley cultivars grown in India. Nahrung 45(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Santha IM, Mehta SL (1988) Amino acid compositions of different protein fractions in developing grains of NP 113 barley and its high lysine Notch-2 mutant. Plant Foods Hum Nutr 38(4):277–286

    Article  PubMed  CAS  Google Scholar 

  • Kamimura A, Takahashi T (2002) Procyanidin B-3, isolated from barley and identified as a hair-growth stimulant, has the potential to counteract inhibitory regulation by TGF-beta1. Exp Dermatol 11(6):532–541

    Article  PubMed  CAS  Google Scholar 

  • Kanauchi O, Nakamura T, Agata K, Mitsuyama K, Iwanaga T (1998) Effects of germinated barley foodstuff on dextran sulfate sodium-induced colitis in rats. J Gastroenterol 33(2):179–188

    Article  PubMed  CAS  Google Scholar 

  • Kanauchi O, Iwanaga T, Andoh A, Araki Y, Nakamura T, Mitsuyama K, Suzuki A, Hibi T, Bamba T (2001) Dietary fiber fraction of germinated barley foodstuff attenuated mucosal damage and diarrhea, and accelerated the repair of the colonic mucosa in an experimental colitis. J Gastroenterol Hepatol 16(2):160–168

    Article  PubMed  CAS  Google Scholar 

  • Kanauchi O, Suga T, Tochihara M, Hibi T, Naganuma M, Homma T, Asakura H, Nakano H, Takahama K, Fujiyama Y, Andoh A, Shimoyama T, Hida N, Haruma K, Koga H, Mitsuyama K, Sata M, Fukuda M, Kojima A, Bamba T (2002) Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 37(suppl 14):67–72

    PubMed  CAS  Google Scholar 

  • Kanauchi O, Mitsuyama K, Andoh A, Iwanaga T (2008a) Modulation of intestinal environment by prebiotic germinated barley foodstuff prevents chemo-induced colonic carcinogenesis in rats. Oncol Rep 20(4):793–801

    PubMed  CAS  Google Scholar 

  • Kanauchi O, Oshima T, Andoh A, Shioya M, Mitsuyama K (2008b) Germinated barley foodstuff ameliorates inflammation in mice with colitis through modulation of mucosal immune system. Scand J Gastroenterol 43(11):1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Keogh GF, Cooper GJ, Mulvey TB, McArdle BH, Coles GD, Monro JA, Poppitt SD (2003) Randomized controlled crossover study of the effect of a highly beta-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am J Clin Nutr 78(4):711–718

    PubMed  CAS  Google Scholar 

  • Keogh JB, Lau CW, Noakes M, Bowen J, Clifton PM (2007) Effects of meals with high soluble fibre, high amylose barley variant on glucose, insulin, satiety and thermic effect of food in healthy lean women. Eur J Clin Nutr 61(5):597–604

    PubMed  CAS  Google Scholar 

  • Kim Y, Yokoyama WH (2011) Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) β-glucan. J Agric Food Chem 59(2):741–746

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun SC, Chung IM (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55(12):4802–4809

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Turowski M, Anderson WH, Young SA, Kim Y, Yokoyama W (2011) Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect. J Agric Food Chem 59(14):7672–7678

    Article  PubMed  CAS  Google Scholar 

  • Kiryluk J, Kawka A, Gasiorowski H, Chalcarz A, Anioła J (2000) Milling of barley to obtain beta-glucan enriched products. Nahrung 44(4):238–241

    Article  PubMed  CAS  Google Scholar 

  • Klausen K, Mortensen AG, Laursen B, Haselmann KF, Jespersen BM, Fomsgaard IS (2010) Phenolic compounds in different barley varieties: identification by tandem mass spectrometry (QStar) and NMR; quantification by liquid chromatography triple quadrupole-linear ion trap mass spectrometry (Q-Trap). Nat Prod Commun 5(3):407–414

    PubMed  CAS  Google Scholar 

  • Koh SJ, Kim JS (2011) Prebiotics: germinated barley foodstuff for the prevention of colitis-associated colon cancer? J Gastroenterol Hepatol 26(8):1219–1220

    Article  PubMed  CAS  Google Scholar 

  • Komiyama Y, Mitsuyama K, Masuda J, Yamasaki H, Takedatsu H, Andoh A, Tsuruta O, Fukuda M, Kanauchi O (2011) Prebiotic treatment in experimental colitis reduces the risk of colitic cancer. J Gastroenterol Hepatol 26(8):1298–1308

    Article  PubMed  CAS  Google Scholar 

  • Krums LM, Parfenov AI, Sabel’nikova EA, Gudkova RB, Vorob’eva NN (2011) Treatment and prevention of gluten-sensitive celiac disease. Eksp Klin Gastroenterol 2:86–92 (in Russian)

    PubMed  Google Scholar 

  • Kvasnička F, Copíková J, Sevčík R, Václavíková E, Synytsya A, Vaculová K, Voldřich M (2011) Deter­mination of phytic acid and inositolphosphates in barley. Electrophoresis 32(9):1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Lahouar L, Ghrairi F, El Felah M, Salem HB, Miled AH, Hammami M, Achour L (2011) Effect of dietary fiber of “Rihane” barley grains and azoxymethane on serum and liver lipid variables in Wistar rats. J Physiol Biochem 67(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kaneko T, Wang Y, Qin LQ, Sato A (2003) Effects of dietary fiber on the glucose tolerance in spontaneously diabetic rats – comparison among barley, rice, and corn starch. Nihon Eiseigaku Zasshi 58(2):281–286 (in Japanese)

    Article  PubMed  CAS  Google Scholar 

  • Liljeberg HG, Granfeldt YE, Björck IM (1996) Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans. J Nutr 126(2):458–466

    PubMed  CAS  Google Scholar 

  • Lim CC, Ferguson LR, Tannock GW (2005) Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol Nutr Food Res 49:609–619

    Article  PubMed  Google Scholar 

  • Liu K (2011) Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J Food Sci 76(2):C334–C342

    Article  PubMed  CAS  Google Scholar 

  • Liu KS, Moreau RA (2008) Concentrations of functional lipids in abraded fractions of hulless barley and effect of storage. J Food Sci 73(7):C569–C576

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Zhao H, Chen J, Fan W, Dong J, Kong W, Sun J, Cao Y, Cai G (2007) Evolution of phenolic compounds and antioxidant activity during malting. J Agric Food Chem 55(26):10994–11001

    Article  PubMed  CAS  Google Scholar 

  • Madhujith T, Shahidi F (2006) Optimization of the extraction of antioxidative constituents of six barley cultivars and their antioxidant properties. J Agric Food Chem 54(21):8048–8057

    Article  PubMed  CAS  Google Scholar 

  • Madhujith T, Shahidi F (2007) Antioxidative and anti­proliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J Agric Food Chem 55(13):5018–5024

    Article  PubMed  CAS  Google Scholar 

  • Madhujith T, Izydorczyk M, Shahidi F (2006) Antioxidant properties of pearled barley fractions. J Agric Food Chem 54(9):3283–3289

    Article  PubMed  CAS  Google Scholar 

  • Maillard MN, Berset C (1995) Evolution of antixodant activity during kilning: role of insoluble bound phenolics acids of barley and malt. J Agric Food Chem 43(7):1789–1793

    Article  CAS  Google Scholar 

  • Mann JD, Steinhart CE, Mudd SH (1963) Alkaloids and plant metabolism. v. The distribution and formation of tyramine methylpherase during germination of barley. J Biol Chem 238(2):676–681

    CAS  Google Scholar 

  • Markham KR, Mitchell KA (2003) The mis-identification of the major antioxidant flavonoids in young barley (Hordeum vulgare) leaves. Z Naturforsch C 58(1–2):53–56

    PubMed  CAS  Google Scholar 

  • Mattila P, Pihlava J-M, Hellstrom J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53(21):8290–8295

    Article  PubMed  CAS  Google Scholar 

  • McIntosh GH, Whyte J, McArthur R, Nestel PJ (1991) Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr 53(5):1205–1209

    PubMed  CAS  Google Scholar 

  • McMurrough I, Madigan D, Smyth MR (1996) Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J Agric Food Chem 44(7):1731–1735

    Article  CAS  Google Scholar 

  • McPhalen CA, James MN (1987) Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. Biochemistry 26(1):261–269

    Article  PubMed  CAS  Google Scholar 

  • National Barley Growers Association (undated) Barley Facts Industry and product information. National Barley Growers Association. http://www.barleyfoods.org/BarleyFacts-Industry.pdf

  • Nevo E (1992) Chapter 2: Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the fertile crescent. In: Shewry PR (ed) Barley genetics, biochemistry, mole­cular biology and biotechnology. CBA International, Wallingford, Oxon, pp 19–43

    Google Scholar 

  • Newman CW, Newman RK (1992) Nutrional aspects of barley seed structure and compostion. Chapter 17. In: Shewry PR (ed) Barley genetics, biochemistry, molecular biology and biotechnology. CBA Inter­national, Wallingford, Oxon, pp 351–368

    Google Scholar 

  • Nielsen, PK, Bønsager BC, Fukuda K, Svensson B (2004) Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. Biochim Biophys Acta 1696:157–164

    Google Scholar 

  • Nilsson A, Granfeldt Y, Ostman E, Preston T, Björck I (2006) Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. Eur J Clin Nutr 60(9):1092–1099

    Article  PubMed  CAS  Google Scholar 

  • OECD (2003) Consensus document on compositional consideration for new varieties of bread wheat (Triticum aestivum): key food and feed nutrients, Anti-nutrients and Toxicants. Report No. ENV/JM/MONO(2003)7, Environment Directorate; Organi­sation for Economic Co-operation and Development, Paris

    Google Scholar 

  • OECD (2004) Consensus document on compositional consideration for new varieties of barley (Hordeum vulgare L.): key food and feed nutrients, Anti-nutrients. Report No. 12, Environment Directorate, Organisation for Economic Co-operation and Develop­ment, Paris

    Google Scholar 

  • Office of the Gene Technology Regulator (OGTR) (2008) The biology of Hordeum vulgare L. (barley). Department of Health and Ageing, Canberra. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/barley-3/$FILE/biologybarley08.pdf

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ EMBO Rep 7:688–693

    Google Scholar 

  • Okarter N (2012) Phenolic compounds from the insoluble-bound fraction of whole grains do not have any cellular antioxidant activity. Life Sci Med Res 2012:LSMR-37

    Google Scholar 

  • Omwamba M, Hu Q (2010) Antioxidant activity in barley (Hordeum vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology. J Food Sci 75(1):C66–C73

    Article  PubMed  CAS  Google Scholar 

  • Panfili G, Fratianni A, Criscio TD, Marconi E (2008) Tocol and β-glucan levels in barley varieties and in pearling by-products. Food Chem 107(1):84–91

    Article  CAS  Google Scholar 

  • Papetti A, Daglia M, Aceti C, Quaglia M, Gregotti C, Gazzani G (2006) Isolation of an in vitro and ex vivo antiradical melanoidin from roasted barley. J Agric Food Chem 54(4):1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Papetti A, Pruzzo C, Daglia M, Grisoli P, Bacciaglia A, Repetto B, Dacarro C, Gazzani G (2007) Effect of barley coffee on the adhesive properties of oral Streptococci. J Agric Food Chem 55(2):278–284

    Article  PubMed  CAS  Google Scholar 

  • Park EY, Kim JA, Kim HW, Kim YS, Song HK (2004) Crystal structure of the Bowman-Birk inhibitor from barley seeds in ternary complex with porcine trypsin. J Mol Biol 343(1):173–186

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Stinissen HM, Carlier AR (1982) Isolation and partial characterization of wheat-germ-agglutinin-like lectins from rye (Secale cereale) and barley (Hordeum vulgare) embryos. Biochem J 203(1):239–243

    PubMed  CAS  Google Scholar 

  • Poppitt SD, van Drunen JD, McGill AT, Mulvey TB, Leahy FE (2007) Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages. Asia Pac J Clin Nutr 16(1):16–24

    PubMed  CAS  Google Scholar 

  • Quinde-Axtell Z, Baik BK (2006) Phenolic compounds of barley grain and their implication in food product discoloration. J Agric Food Chem 54(26):9978–9984

    Article  PubMed  CAS  Google Scholar 

  • Ranhotra GS, Gelroth JA, Leinen SD, Bhatty RS (1998) Dose response to soluble fiber in barley in lowering blood lipids in hamster. Plant Foods Hum Nutr 52(4):329–336

    Article  PubMed  CAS  Google Scholar 

  • Rendell M, Vanderhoof J, Venn M, Shehan MA, Arndt E, Rao CS, Gill G, Newman RK, Newman CW (2005) Effect of a barley breakfast cereal on blood glucose and insulin response in normal and diabetic patients. Plant Foods Hum Nutr 60(2):63–67

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-López M, Baroja-Fernández E, Zandueta-Criado A, Moreno-Bruna B, Muñoz FJ, Akazawa T, Pozueta-Romero J (2001) Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett 490(1–2):44–48

    Article  PubMed  Google Scholar 

  • Russo CA, Burton G, Gros EG (1983) Metabolism of [methyl-13C2]hordenine in homogenates from Hordeum vulgare roots. Phtyochemistry 22(1):71–73

    Article  CAS  Google Scholar 

  • Sanchez-Monge R, Gomez L, Barber D, Lopez-Otin C, Armentia A, Salcedo G (1992) Wheat and barley allergens associated with baker’s asthma. Glycosylated subunits of the alpha-amylase-inhibitor family have enhanced IgE-binding capacity. Biochem J 281(Pt 2):401–405

    PubMed  CAS  Google Scholar 

  • Schmid S, Koczwara K, Schwinghammer S, Lampasona V, Ziegler AG, Bonifacio E (2004) Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol 111(1):108–118

    Article  PubMed  CAS  Google Scholar 

  • Seikel MK, Bushnell AJ (1959) The flavonoid constituents of barley (Hordeum vulgare). II. Lutonarin. J Org Chem 24(12):1995–1997

    Article  Google Scholar 

  • Seikel MK, Geissman TA (1957) The flavonoid constituents of barley (Hordeum vulgare). I. Saponarin. Arch Biochem Biophys 71(1):17–30

    Article  PubMed  CAS  Google Scholar 

  • Seikel MK, Bushnell AJ, Birzgalis R (1962) The flavonoid constituents of barley (Hordeum vulgare). III. Lutonarin and its 3′-methyl ether. Arch Biochem Biophys 99:451–457

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:946–956

    Google Scholar 

  • Shimizu C, Kihara M, Aoe S, Araki S, Ito K, Hayashi K, Watari J, Sakata Y, Ikegami S (2008) Effect of high beta-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men – a randomized, double-blinded, placebo-controlled trial. Plant Foods Hum Nutr 63(1):21–25

    Article  PubMed  CAS  Google Scholar 

  • Shukla K, Narain JP, Puri P, Gupta A, Bijlani RL, Mahapatra SC, Karmarkar MG (1991) Glycaemic response to maize, bajra and barley. Indian J Physiol Pharmacol 35(4):249–254

    PubMed  CAS  Google Scholar 

  • Siebenhandl S, Grausgruber H, Pellegrini N, Del Rio D, Fogliano V, Pernice R, Berghofer E (2007) Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J Agric Food Chem 55(21):8541–8547

    Article  PubMed  CAS  Google Scholar 

  • Smith KN, Queenan KM, Thomas W, Fulcher RG, Slavin JL (2008) Physiological effects of concentrated barley beta-glucan in mildly hypercholesterolemic adults. J Am Coll Nutr 27(3):434–440

    PubMed  CAS  Google Scholar 

  • Stauder M, Papetti A, Daglia M, Vezzulli L, Gazzani G, Varaldo PE, Pruzzo C (2010) Inhibitory activity by barley coffee components towards Streptococcus mutans biofilm. Curr Microbiol 61(5):417–421

    Article  PubMed  CAS  Google Scholar 

  • Talati R, Baker WL, Pabilonia MS, White CM, Coleman CI (2009) The effects of barley-derived soluble fiber on serum lipids. Ann Fam Med 7(2):157–163

    Article  PubMed  Google Scholar 

  • Tallberg A (1982) Characterization of high-lysine barley genotypes. Hereditas 96:229–245

    Article  Google Scholar 

  • Tanioka A, An WW, Kuge T, Tsubaki K, Nakaya K (2011) Barley low molecular weight β-glucan potently induces maturation of mouse dendritic cells. Anticancer Res 31(5):1647–1651

    PubMed  CAS  Google Scholar 

  • Thondre PS, Henry CJ (2009) High-molecular-weight barley beta-glucan in chapatis (unleavened Indian flatbread) lowers glycemic index. Nutr Res 29(7):480–486

    Article  PubMed  CAS  Google Scholar 

  • Thondre PS, Wang K, Rosenthal AJ, Henry CJ (2012) Glycaemic response to barley porridge varying in dietary fibre content. Br J Nutr 107(5):719–724

    Article  PubMed  CAS  Google Scholar 

  • Tiwari U, Cummins E (2011) Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Nutrition 27(10):1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Trogh I, Courtin CM, Andersson AAM, Åman P, Sørensen JF, Delcour JA (2004) The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1  →  3,1  →  4)-β-D-glucan levels. J Cereal Sci 40(3):257–267

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA National Nutrient Database for standard reference, Release 25. Nutrient Data Laboratory home page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Van Gool D, Vernon L (2006) Potential impacts of climate change on agricultural land use suitability: barley. Report No. 302. Department of Agriculture, Government of Western Australia, Perth

    Google Scholar 

  • Varjonen E, Savolainen J, Mattila L, Kalimo K (1994) IgE-binding components of wheat, rye, barley and oats recognized by immunoblotting analysis with sera from adult atopic dermatitis patients. Clin Exp Allergy 24(5):481–489

    Article  PubMed  CAS  Google Scholar 

  • Verardo V, Bonoli M, Marconi E, Caboni MF (2008a) Determination of free flavan-3-ol content in barley (Hordeum vulgare L.) air-classified flours: comparative study of HPLC-DAD/MS and spectrophoto­metric determinations. J Agric Food Chem 56(16):6944–6948

    Article  PubMed  CAS  Google Scholar 

  • Verardo V, Bonoli M, Marconi E, Caboni MF (2008b) Distribution of bound hydroxycinnamic acids and their glycosyl esters in barley (Hordeum vulgare L.) air-classified flour: comparative study between reversed phase-high performance chromatography-mass spectrometry (RP-HPLC/MS) and spectrophotometric analysis. J Agric Food Chem 56(24):11900–11905

    Article  PubMed  CAS  Google Scholar 

  • Verardo V, Riciputi Y, Messia MC, Vallicelli M, Falasca L, Marconi E, Caboni MF (2011) Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products. Int J Food Sci Nutr 62(3):262–269

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, González-Quintela A (1995) Food-induced and occupational asthma due to barley flour. Ann Allergy Asthma Immunol 75(2):121–124

    PubMed  CAS  Google Scholar 

  • Wang L, Newman RK, Newman CW, Jackson LL, Hofer PJ (1993a) Tocotrienol and fatty acid composition of barley oil and their effects on lipid metabolism. Plant Foods Hum Nutr 43(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xue Q, Newman RK, Newman CW (1993b) Enrichment of tocopherol, tocotrienol, and oil in barley by milling and pearling. Cereal Chem 70(5):499–501

    CAS  Google Scholar 

  • Weselake RJ, Macgregor AW, Hill RD, Duckworth HW (1983) Purification and characteristics of an endogenous alpha-amylase inhibitor from barley kernels. Plant Physiol 73(4):1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Wikipedia (2012) Barley. http://en.wikipedia.org/wiki/Barley

  • Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Moolchandani V, Kotyla T, Ponduru S, Zheng GH, Hess R, Knutson N, Curry L, Kolberg L, Goulson M, Ostergren K (2004) Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr 134(10):2617–2622

    PubMed  CAS  Google Scholar 

  • Wright CS, Schroeder MR, Raikhel NV (1993) Crystallization and preliminary X-ray diffraction studies of recombinant barley lectin and pro-barley lectin. J Mol Biol 233(2):322–324

    Article  PubMed  CAS  Google Scholar 

  • Yalcin E, Celik S, Akar T, Sayim I, Koksel H (2007) Effects of genotype and environment on β-glucan and dietary fiber contents of hull-less barleys grown in Turkey. Food Chem 101(1):171–176

    Article  CAS  Google Scholar 

  • Yamaura K, Nakayama N, Shimada M, Bi Y, Fukata H, Ueno K (2010) Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test. Pharmacogn Res 4:22–26

    Article  Google Scholar 

  • Yang JL, Kim YH, Lee HS, Lee MS, Moon YK (2003) Barley beta-glucan lowers serum cholesterol based on the up-regulation of cholesterol 7alpha-hydroxylase activity and mRNA abundance in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 49(6):381–387

    Article  CAS  Google Scholar 

  • Yap JC, Chan CC, Wang YT, Poh SC, Lee HS, Tan KT (1994) A case of occupational asthma due to barley grain dust. Ann Acad Med Singapore 23(5):734–736

    PubMed  CAS  Google Scholar 

  • Yeung H-C (1985) Handbook of Chinese herbs and formulas. Institute of Chinese Medicine, Los Angeles

    Google Scholar 

  • Yu J, Vasanthan T, Temelli F (2001) Analysis of phenolic acids in barley by high-performance liquid chromatography. J Agric Food Chem 49(9):4352–4358

    Article  PubMed  CAS  Google Scholar 

  • Yu YM, Chang WC, Chang CT, Hsieh CL, Tsai CE (2002a) Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metab 28(2):107–114

    PubMed  Google Scholar 

  • Yu YM, Wu CH, Tseng YH, Tsai CE, Chang WC (2002b) Antioxidative and hypolipidemic effects of barley leaf essence in a rabbit model of atherosclerosis. Jpn J Pharmacol 89(2):142–148

    Article  PubMed  CAS  Google Scholar 

  • Yu YM, Chang WC, Liu CS, Tsai CM (2004) Effect of young barley leaf extract and adlay on plasma lipids and LDL oxidation in hyperlipidemic smokers. Biol Pharm Bull 27(6):802–805

    Article  PubMed  CAS  Google Scholar 

  • Zarnowski R, Suzuki Y (2004) 5-n-alkylresorcinols from grains of winter barley (Hordeum vulgare L.). Z Naturforsch 59c:315–317

    Google Scholar 

  • Zarnowski R, Suzuki Y, Yamaguchi I, Pietr SJ (2002) Alkylresorcinols in barley (Hordeum vulgare L. distichon) grains. Z Naturforsch C 57(1–2):57–62

    PubMed  CAS  Google Scholar 

  • Zhao H, Dong J, Lu J, Chen J, Li Y, Shan L, Lin Y, Fan W, Gu G (2006) Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). J Agric Food Chem 54(19):7277–7286

    Article  PubMed  CAS  Google Scholar 

  • Zheng GH, Rossnagel BG, Tyler RT, Bhatty RS (2000) Distrubution of β-glucan in the grain of hull-less barley. Cereal Chem 77(2):140–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Hordeum vulgare . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_16

Download citation

Publish with us

Policies and ethics