Skip to main content
Log in

A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The lemma and palea (lemma/palea), which form the husk of barley (Hordeum vulgare L.) seeds, constitutively express high levels of defense-related genes, relative to leaves [Abebe et al. (2004) Crop Sci 44:942–950]. One of these genes, Lem2, is expressed mainly in the lemma/palea and coleoptile and is strongly upregulated by salicylic acid (SA) and its functional analog 2,6-dichloroisonicotinic acid . Induction by SA was rapid, occurring within 4 h of treatment. However, Lem2 is not responsive to methyl jasmonate (MeJA) or wounding and is downregulated by drought, dehydration, and abscisic acid. These results suggest that Lem2 is involved in systemic acquired resistance. Sequence analysis showed that LEM2 is a jacalin-related lectin (JRL)-like protein with two domains. Consistent with northern and western blot data, transient expression analyses using Lem2::gfp constructs showed strong expression in lemmas and a trace expression in leaves. Successive 5′ deletions of the 1,414 bp upstream region gradually weakened promoter strength, as measured by real-time PCR. Promoter deletion studies also revealed that the −75/+70 region (containing the TATA box, 5′ UTR, and a SA-response element) determines tissue specificity and that the distal promoter region simply enhances expression. Southern analysis indicated that Morex barley has at least three copies of the Lem2 gene arranged in tandem on chromosome 5(1H) Bin 02, near the short arm telomere. Lem2 is not present in the barley cultivars Steptoe, Harrington, Golden Promise, and Q21861.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

Abscisic acid response element

ERE:

Ethylene response element

HSE:

Heat shock element

Gal:

Galactose

Glc:

Glucose

HR:

Hypersensitive response

INA:

2,6-Dichloroisonicotinic acid

JA:

Jasmonate

JRL:

Jacalin-related lectin

Man:

Mannose

MeJA:

Methyl-jasmonate

PAGE:

Polyacrylamide gel electrophoresis

PR:

Pathogenesis-related

RACE:

Rapid amplification of cDNA ends

SA:

Salicylic acid

SAR:

Systemic acquired resistance

References

  • Abebe T, Skadsen RW, Kaeppler HF (2004) Cloning and identification of highly expressed genes in barley lemma and palea. Crop Sci 44:942–950

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  PubMed  Google Scholar 

  • Chirgwin JM, Prybyla A, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    CAS  PubMed  Google Scholar 

  • Chiu W-L, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Claes B, Dekeyser R, Villaroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    Article  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • De Souza Filho GA, Ferreira BS, Dias GM, Queiroz SK, Branco AT, Bressan-Smith RE, Oliveira JG, Garcia AB (2003) Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci 164:623–628

    Article  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P et al (1996) A benzothiadiazole derivate induces systemic acquired resistance in tobacco. Plant J 10:61–70

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    CAS  Google Scholar 

  • Garcia AB, Engler JA, Claes B, Villarroel R, Van Montagu M, Gerats T, Caplan A (1998) The expression of the salt-responsive gene salT from rice is regulated by hormonal and developmental cues. Planta 207:172–180

    Article  CAS  PubMed  Google Scholar 

  • Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623

    CAS  PubMed  Google Scholar 

  • Geshi N, Brandt A (1998) Two jasmonate-inducible MBPs from Brassica napus L. seedlings with homology to jacalin. Planta 204:295–304

    CAS  PubMed  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessman H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signalling by SA. Mol Plant Microbe Interact 13:503–511

    CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack K, Jones JDG (2000) Response to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1102–1156

    Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Horvath DM, Huang DJ, Chua N-H (1998) Four classes of salicylate-induced tobacco genes. Mol Plant Microbe Interact 11:895–905

    CAS  PubMed  Google Scholar 

  • Kaeppler H, Menon G, Skadsen R, Nuutila A, Carlson A (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep 19:661–666

    CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Koo SC, Cho MJ, Kang KY (2004) Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Rep 23(4):256–262

    CAS  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Crosstalk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lawton K, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    CAS  PubMed  Google Scholar 

  • Lee J, Parthier B, Löbler M (1996) Jasmonate signalling can be uncoupled from abscisic acid signalling in barley: identification of jasmonate-regulated transcripts which are not induced by abscisic acid. Planta 199:625–632

    CAS  PubMed  Google Scholar 

  • Lescot M, Dèhais P, Thijs J, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Kaul S, Rounsley SD et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    CAS  PubMed  Google Scholar 

  • Mann K, Farias CM, DelSol FG, Santos CF, Grangeiro TB, Nagano CS, Cavada BS, Calvete JJ (2001) The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains. Eur J Biochem 268:4414–4422

    CAS  PubMed  Google Scholar 

  • Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    CAS  PubMed  Google Scholar 

  • Murray SL, Thomson C, Chini A, Read ND, Loake GJ (2002) Characterisation of a novel defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Mol Plant Microbe Interact 15:557–566

    CAS  PubMed  Google Scholar 

  • Nakamura S, Ikegami A, Matsumura Y, Nakanishi T, Nomura K (2002) Molecular cloning and expression of the mannose/glucose specific lectin from Castanea crenata cotyledons. J Biochem (Tokyo) 131:241–246

    CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    CAS  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430–438

    CAS  PubMed  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, Samblanx GWD, Buchala A, Metraux J-P, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, Winter HC, Bemer V, Van Leuven F, Goldstein IJ, Truffa-Bachi P, Van Damme EJM (1997) Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconjugate J 14:259–265

    CAS  Google Scholar 

  • Peumans WJ, Hause B, Van Damme EJ (2000) The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Lett 477:186–192

    CAS  PubMed  Google Scholar 

  • Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT (1999) Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95

    CAS  PubMed  Google Scholar 

  • Qin XF, Holuigue L, Horvath DM, Chua N-H (1994) Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 6:863–874

    CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  CAS  PubMed  Google Scholar 

  • Rosa JC, De Oliveira PSL, Garratt R, Beltramini L, Resing K, Roque-Barreira M-C, Greene LJ (1999) KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the beta-prism fold. Protein Sci 8:13–24

    CAS  PubMed  Google Scholar 

  • Rouster J, Van Mechelen J, Cameron-Mills V (1998) The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression. Plant J 15:435–440

    CAS  PubMed  Google Scholar 

  • Roy A, Banerjee S, Majumder P, Das S (2002) Efficiency of mannose-binding plant lectins in controlling a Hemopteran insect, the red cotton bug. J Agric Food Chem 50:6775–6779

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K et al (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Buchala A, Métraux J-P (1997) Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6-dichloroisonicotinic acid. Plant Physiol 115:61–70

    PubMed  Google Scholar 

  • Skaden RW, Schulze-Lefert P, Herbst JM (1995) Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Mol Biol 29:1005–1014

    PubMed  Google Scholar 

  • Skadsen RW, Sathish P, Kaeppler HF (2000) Expression of thaumatin-like permatin PR-5 genes switches from the ovary wall to the aleurone in developing barley and oat seeds. Plant Sci 156:11–22

    CAS  PubMed  Google Scholar 

  • Skadsen RW, Sathish P, Federico ML, Abebe T, Fu J, Kaeppler HF (2002) Cloning of the promoter for a novel barley gene, Lem1, and its organ-specific promotion of gfp expression in lemma and palea. Plant Mol Biol 49:545–555

    CAS  PubMed  Google Scholar 

  • Stomp AM (1992) GUS protocol: using the GUS gene reporter of gene expression. Academic Press, New York, pp 103–112

    Google Scholar 

  • Thaler JS, Karban R, Ullman DE, Boege K, Bostock RM (2002) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235

    Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF,Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E, Ryals J (1993) Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell 5:159–169

    CAS  PubMed  Google Scholar 

  • Van Damme EJ, Barre A, Verhaert P, Rougé P, Peumans WJ (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett 397:352–356

    PubMed  Google Scholar 

  • Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Google Scholar 

  • Van Damme EJ, Barre A, Mazard AM, Verhaert P, Horman A, Debray H, Rouge P, Peumans WJ (1999a) Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur J Biochem 259:135–142

    PubMed  Google Scholar 

  • Van Damme EJM, Charels D, Roy S, Tierens K, Barre A, Martins JC, Rougé P, Van Leuven F, Does M, Peumans WJ (1999b) A Gene encoding a hevein-like protein from elderberry fruits is homologous to PR-4 and class V chitinase genes. Plant Physiol 119:1547–1556

    PubMed  Google Scholar 

  • Van Damme EJM, Hause B, Hu J, Barre A, Rougé P, Proost P, Peumans WJ (2002) Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. Plant Physiol 130:757–769

    PubMed  Google Scholar 

  • Vernooij B, Friedrich L, Ahl-Goy P, Staub T, Kessmann H, Ryals J (1995) 2,6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Mol Plant Microbe Interact 8:228–234

    CAS  Google Scholar 

  • Walling LL (2000) The myrad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wan Y, Lemaux P (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux J-P, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    CAS  PubMed  Google Scholar 

  • Williams CE, Collier CC, Nemacheck JA, Liang C, Cambron SE (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J Chem Ecol 28:1411–1428

    CAS  PubMed  Google Scholar 

  • Xiang C, Miao ZH, Lam E (1996) Coordinated activation of as-1 type elements and a tobacco gluthatione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol 32:415–426

    CAS  PubMed  Google Scholar 

  • Xu Q, Liu Y, Wang X, Gu H, Chen Z (1998) Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol Biochem 36:899–905

    CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rouge P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJ (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Herbst, Laura Oesterle, Janelle Young, Sarah Olsen, and Josh Ladwig for their technical assistance. We thank Maria Laura Federico for assistance with real-time PCR. We also thank Andris Kleinhofs for mapping Lem2 and providing Lem2-containing BAC clones. This work was supported by the North American Barley Genome Mapping Project, the American Malting Barley Association, and the United States Department of Agriculture, CRIS number 3655-21430-006-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald W. Skadsen.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abebe, T., Skadsen, R.W. & Kaeppler, H.F. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta 221, 170–183 (2005). https://doi.org/10.1007/s00425-004-1429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1429-9

Keywords

Navigation