Skip to main content

Mechanisms of Brain Morphogenesis

  • Conference paper
Computer Models in Biomechanics

Abstract

In structures with obvious mechanical function, like the heart and bone, the relationship of mechanical forces to growth and development has been well studied. In contrast, other than the problem of neurulation, the developmental mechanisms in the nervous system have received relatively little attention. In this review we discuss recent advances in our understanding of the physical mechanisms of morphogenesis during brain development. Specifically, we focus on two processes: formation of the primary brain vesicles and folding of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barnette AR, Neil JJ, Kroenke CD, Griffith JL, Epstein AA, Bayly PV, Knutsen AK, Inder TE (2009) Characterization of brain development in the ferret via MRI. Pediatr Res 66(1):80–84

    Article  Google Scholar 

  • Barron DH (1950) An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J Exp Zool 113:553–573

    Article  Google Scholar 

  • Brodland GW, Chen X, Lee P, Marsden M (2010) From genes to neural tube defects (NTDs): insights from multiscale computational modeling. HFSP J 4(3–4):142–152

    Article  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev, Neurosci 9(2):110–122

    Article  Google Scholar 

  • Chen X, Brodland GW (2008) Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys Biol 5(19):15003

    Article  Google Scholar 

  • Clausi DA, Brodland GW (1993) Mechanical evaluation of theories of neurulation using computer simulations. Development 118:1013–1023

    Google Scholar 

  • Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4:784–793

    Article  Google Scholar 

  • Davies JA (2005) Mechanisms of morphogenesis: the creation of biological form. Elsevier, San Diego

    Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57(1):188–198

    Article  Google Scholar 

  • Desmond ME, Levitan ML (2002) Brain expansion in the chick embryo initiated by experimentally produced occlusion of the spinal neurocoel. Anat Rec 268(2):147–159

    Article  Google Scholar 

  • Desmond ME, Levitan ML, Haas AR (2005) Internal luminal pressure during early chick embryonic brain growth: descriptive and empirical observations. Anat Rec, Part a Discov Mol Cell Evol Biol 285(2):737–747

    Article  Google Scholar 

  • Filas BA, Knutsen AK, Bayly PV, Taber LA (2008) A new method for measuring deformation of folding surfaces during morphogenesis. J Biomech Eng 130:61010

    Article  Google Scholar 

  • Filas BA, Bayly PV, Taber LA (2011) Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann Biomed Eng 39:443–454

    Article  Google Scholar 

  • Filas BA, Oltean A, Beebe DC, Okamoto RJ, Bayly PV, Taber LA (2012) A potential role for differential contractility in early brain development and evolution. Biomech Model Mechanobiol (in press)

    Google Scholar 

  • Gato A, Desmond ME (2009) Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol 327(2):263–272

    Article  Google Scholar 

  • Geng G, Johnston LA, Yan E, Britto JM, Smith DW, Walker DW, Egan GF (2009) Biomechanisms for modelling cerebral cortical folding. Med Image Anal 13(6):920–930

    Article  Google Scholar 

  • Greene NDE, Copp AJ (2009) Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 29(4):303–311

    Article  Google Scholar 

  • Guthrie S, Butcher M, Lumsden A (1991) Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain. J Neurobiol 22(7):742–754

    Article  Google Scholar 

  • Gutzman JH, Graeden EG, Lowery LA, Holley HS, Sive H (2008) Formation of the zebrafish midbrain-hindbrain boundary constriction requires laminin-dependent basal constriction. Mech Dev 125(11–12):974–983

    Article  Google Scholar 

  • Gutzman JH, Sive H (2010) Epithelial relaxation mediated by the myosin phosphatase regulator Mypt1 is required for brain ventricle lumen expansion and hindbrain morphogenesis. Development 137(5):795–804

    Article  Google Scholar 

  • Harrington MJ, Hong E, Brewster R (2009) Comparative analysis of neurulation: first impressions do not count. Mol Reprod Dev 76(10):954–965

    Article  Google Scholar 

  • Heyman I, Kent A, Lumsden A (1993) Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo hindbrain. Dev Dyn 198(4):241–253

    Article  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev, Neurosci 6(7):553–564

    Article  Google Scholar 

  • Kinoshita N, Sasai N, Misaki K, Yonemura S (2008) Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation. Mol Biol Cell 19(5):2289–2299

    Article  Google Scholar 

  • Kroenke CD, Taber EN, Leigland LA, Knutsen AK, Bayly PV (2009) Regional patterns of cerebral cortical differentiation determined by diffusion tensor MRI. Cereb Cortex 19(12):2916–2929

    Article  Google Scholar 

  • Lee HY, Nagele RG (1985) Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells. J Exp Zool 235(2):205–215

    Article  Google Scholar 

  • Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and a reevaluation of teleost neural tube formation. Mech Dev 121(10):1189–1197

    Article  Google Scholar 

  • Lowery LA, Sive H (2005) Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132(9):2057–2067

    Article  Google Scholar 

  • Lowery LA, Sive H (2009) Totally tubular: the mystery behind function and origin of the brain ventricular system. BioEssays 31(4):446–458

    Article  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36

    Article  Google Scholar 

  • Miyata T (2008) Development of three-dimensional architecture of the neuroepithelium: role of pseudostratification and cellular ‘community’. Dev Growth Differ 50(Suppl 1):S105–S112

    Google Scholar 

  • Neal J, Takahashi M, Silva M, Tiao G, Walsh CA, Sheen VL (2007) Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J Anat 210(1):66–77

    Article  Google Scholar 

  • Nie J, Li G, Guo L, Liu T (2009) A computational model of cerebral cortex folding. In: 12th international conference on medical image computing and computer-assisted intervention, 12(Pt 2). London, pp 458–465

    Google Scholar 

  • Nyholm MK, Abdelilah-Seyfried S, Grinblat Y (2009) A novel genetic mechanism regulates dorsolateral hinge-point formation during zebrafish cranial neurulation. J Cell Sci 122(Pt 12):2137–2148

    Article  Google Scholar 

  • Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol 85:446–462

    Article  Google Scholar 

  • Pacheco MA, Marks RW, Schoenwolf GC, Desmond ME (1986) Quantification of the initial phases of rapid brain enlargement in the chick embryo. Am J Anat 175(4):403–411

    Article  Google Scholar 

  • Raghavan R, Lawton W, Ranjan SR, Viswanathan RR (1997) A continuum mechanics-based model for cortical growth. J Theor Biol 187(2):285–296

    Article  Google Scholar 

  • Reillo I, de Juan Romero C, García-Cabezas MÁ, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21(7):1674–1694

    Article  Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW, Caviness VS Jr (1975) Mechanical model of brain convolutional development. Science 189(4196):18–21

    Article  Google Scholar 

  • Sadler TW, Greenberg D, Coughlin P, Lessard JL (1982) Actin distribution patterns in the mouse neural tube during neurulation. Science 215(4529):172–174

    Article  Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62(2):377–405

    Article  Google Scholar 

  • Schmitz B, Papan C, Campos-Ortega JA (1993) Neurulation in the anterior trunk region of the zebrafish brachydanio rerio. Roux’s Arch Dev Biol 202(5):250–259

    Article  Google Scholar 

  • Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109:243–270

    Google Scholar 

  • Smart IH, McSherry GM (1986a) Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J Anat 146:141–152

    Google Scholar 

  • Smart IH, McSherry GM (1986b) Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J Anat 147:27–43

    Google Scholar 

  • Smith JL, Schoenwolf GC (1988) Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Connect Tissue Res 252(3):491–500

    Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15(12):1900–1913

    Article  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318

    Article  Google Scholar 

  • Xu G, Kemp PS, Hwu JA, Beagley AM, Bayly PV, Taber LA (2010a) Opening angles and material properties of the early embryonic chick brain. J Biomech Eng 132(1):011005

    Article  Google Scholar 

  • Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA (2010b) Axons pull on the brain, but tension does not drive cortical folding. J Biomech Eng 132(7):071013

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from NIH grants R01 GM075200 and R01 NS070918 (LAT), as well as a fellowship for BAF from NIH T90 DA022871 and the Mallinckrodt Institute of Radiology, Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Taber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Filas, B.A., Xu, G., Taber, L.A. (2013). Mechanisms of Brain Morphogenesis. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics