Skip to main content

Self-Organization in Embryonic Development: Myth and Reality

  • Chapter
  • First Online:
Self-Organization as a New Paradigm in Evolutionary Biology

Part of the book series: Evolutionary Biology – New Perspectives on Its Development ((EBNPD,volume 5))

Abstract

“Self-organization” has become a watchword in developmental biology, characterizing observations in which embryonic or induced stem cells derived from animals replicate morphological steps and outcomes seen in intact embryos. While the term was introduced in the eighteenth century by the philosopher Immanuel Kant to describe the goal-directed properties of living systems, it came into modern use for non-living materials in which complex forms and patterns emerge through dynamical, energy-expending physical processes. What is the relationship among these uses of the term? While multicellular forms arose dozens of times from single-celled organisms, only some of these undergo development, and not all developmental processes are self-organizing. The evolution of the animals (metazoans) from unicellular holozoans was accompanied by the addition of novel gene products which mediated the constitution of the resulting cell clusters as liquid-, liquid crystal-, and solid-like materials with protean morphogenetic propensities. Such materials variously exhibited multilayering, lumen formation and elongation, echoing the self-organizing properties of nonliving matter, “generic” based on such parallels, though with biologically based subunit properties and modes of interaction. These effects provided evolutionary starting points of and templates for embryonic forms and morphological motifs of diverse metazoan lineages. Embryos and organ primordia of present-day animal species continue to generate forms that resemble the outcomes of these physical effects. Their development, however, employs overdetermined, highly evolved mechanisms that are often disconnected from their originating processes. Using the examples of gastrulation, somitogenesis, and limb skeletal development, this chapter provides instances of, and a conceptual framework for understanding, the relationships between transparently physical and evolved types of developmental self-organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newman, S.A. (2022). Self-Organization in Embryonic Development: Myth and Reality. In: Dambricourt Malassé, A. (eds) Self-Organization as a New Paradigm in Evolutionary Biology. Evolutionary Biology – New Perspectives on Its Development, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-04783-1_8

Download citation

Publish with us

Policies and ethics