Skip to main content
Log in

Mechanical Stress as a Regulator of Cytoskeletal Contractility and Nuclear Shape in Embryonic Epithelia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechano-sensitive responses of the heart and brain were examined in the chick embryo during Hamburger and Hamilton stages 10–12. During these early stages of development, cells in these structures are organized into epithelia. Isolated hearts and brains were compressed by controlled amounts of surface tension (ST) at the surface of the sample, and microindentation was used to measure tissue stiffness following several hours of culture. The response of both organs was qualitatively similar, as they stiffened under reduced loading. With increased loading, however, the brain softened while heart stiffness was similar to controls. In the brain, changes in nuclear shape and morphology correlated with these responses, as nuclei became more elliptical with decreased loading and rounder with increased loading. Exposure to the myosin inhibitor blebbistatin indicated that these changes in stiffness and nuclear shape are likely caused by altered cytoskeletal contraction. Computational modeling suggests that this behavior tends to return peak tissue stress back toward the levels it has in the intact heart and brain. These results suggest that developing cardiac and neural epithelia respond similarly to changes in applied loads by altering contractility in ways that tend to restore the original mechanical stress state. Hence, this study supports the view that stress-based mechanical feedback plays a role in regulating epithelial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Beloussov, L. V. The Dynamic Architecture of a Developing Organism: An Interdisciplinary Approach to the Development of Organisms. Dordrecht, The Netherlands: Kluwer, 1998.

    Google Scholar 

  2. Beloussov, L. V. Mechanically based generative laws of morphogenesis. Phys. Biol. 5:15009, 2008.

    Article  Google Scholar 

  3. Beloussov, L. V., and V. I. Grabovsky. Morphomechanics: goals, basic experiments and models. Int. J. Dev. Biol. 50:81–92, 2006.

    Article  PubMed  Google Scholar 

  4. Butler, J. K. An Experimental Analysis of Cardiac Loop Formation in the Chick. M.S. thesis, University of Texas, 1952.

  5. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Chowdhury, F., S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82–88, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Clark, E. B., N. Hu, P. Frommelt, G. K. Vandekieft, J. L. Dummett, and R. J. Tomanek. Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am. J. Physiol. 257:H55–H61, 1989.

    CAS  PubMed  Google Scholar 

  8. Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Desmond, M. E., and A. G. Jacobson. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev. Biol. 57:188–198, 1977.

    Article  CAS  PubMed  Google Scholar 

  10. Desmond, M. E., M. L. Levitan, and A. R. Haas. Internal luminal pressure during early chick embryonic brain growth: descriptive and empirical observations. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 285:737–747, 2005.

    PubMed  Google Scholar 

  11. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Gonzalez, R., and J. A. Zallen. Cell mechanics and feedback regulation of actomyosin networks. Sci. Signal. 2:pe78, 2009.

    Google Scholar 

  13. Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. 290:1057–1068, 2007.

    Article  Google Scholar 

  14. Filas, B. A., A. K. Knutsen, P. V. Bayly, and L. A. Taber. A new method for measuring deformation of folding surfaces during morphogenesis. J. Biomech. Eng. 130:061010, 2008.

    Article  PubMed  Google Scholar 

  15. Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21:1361–1367, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Goodrum, G. R., and A. G. Jacobson. Cephalic flexure formation in the chick embryo. J. Exp. Zool. 216:399–408, 1981.

    Article  CAS  PubMed  Google Scholar 

  18. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.

    Article  CAS  PubMed  Google Scholar 

  19. Gutzman, J. H., E. G. Graeden, L. A. Lowery, H. S. Holley, and H. Sive. Formation of the zebrafish midbrain–hindbrain boundary constriction requires laminin-dependent basal constriction. Mech. Dev. 125:974–983, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.

    Article  Google Scholar 

  21. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Jaalouk, D. E., and J. Lammerding. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10:63–73, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins, M. W., F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins. 4D embryonic cardiography using gated optical coherence tomography. Opt. Express 14:736–748, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Jurisicova, A., S. Varmuza, and R. F. Casper. Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 2:93–98, 1996.

    Article  CAS  PubMed  Google Scholar 

  25. Kassab, G. S., and Navia, J. A. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu. Rev. Biomed. Eng. 8:499–535, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Kornikova, E. S., T. G. Troshina, S. V. Kremnyov, and L. V. Beloussov. Neuro-mesodermal patterns in artificially deformed embryonic explants: a role for mechano-geometry in tissue differentiation. Dev. Dyn. 239:885–896, 2010.

    Article  CAS  PubMed  Google Scholar 

  27. Krieg, M., Y. Arboleda-Estudillo, P. H. Puech, J. Kafer, F. Graner, D. J. Muller, and C. P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–436, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94:849–854, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. Manner, J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat. Rec. 259:248–262, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Mizutani, T., H. Haga, and K. Kawabata. Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil. Cytoskeleton 59:242–248, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Munro, E. M., and G. M. Odell. Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129:13–24, 2002.

    CAS  PubMed  Google Scholar 

  32. Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102:11594–11599, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Nerurkar, N. L., A. Ramasubramanian, and L. A. Taber. Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads. Dev. Dyn. 235:1822–1829, 2006.

    Article  PubMed  Google Scholar 

  34. Pajerowski, J. D., K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104:15619–15624, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Pouille, P. A., P. Ahmadi, A. C. Brunet, and E. Farge. Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2:ra16, 2009.

    Google Scholar 

  36. Ramasubramanian, A., N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber. On modeling morphogenesis of the looping heart following mechanical perturbations. J. Biomech. Eng. 130:061018, 2008.

    Article  PubMed  Google Scholar 

  37. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Remond, M. C., J. A. Fee, E. L. Elson, and L. A. Taber. Myosin-based contraction is not necessary for cardiac c-looping in the chick embryo. Anat. Embryol. (Berl.) 211:443–454, 2006.

    Article  CAS  Google Scholar 

  39. Saez, A., M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104:8281–8286, 2007.

    Article  CAS  PubMed  Google Scholar 

  40. Taber, L. A. Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:487–545, 1995.

    Article  Google Scholar 

  41. Taber, L. A. Biophysical mechanisms of cardiac looping. Int. J. Dev. Biol. 50:323–332, 2006.

    Article  PubMed  Google Scholar 

  42. Taber, L. A. Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech. Model. Mechanobiol. 7:427–441, 2008.

    Article  PubMed  Google Scholar 

  43. Taber, L. A. Towards a unified theory for morphomechanics. Philos. Trans. A Math. Phys. Eng. Sci. 367:3555–3583, 2009.

    Article  Google Scholar 

  44. Trepat, X., L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg. Universal physical responses to stretch in the living cell. Nature 447:592–595, 2007.

    Article  CAS  PubMed  Google Scholar 

  45. Voronov, D. A., and L. A. Taber. Cardiac looping in experimental conditions: the effects of extraembryonic forces. Dev. Dyn. 224:413–421, 2002.

    Article  PubMed  Google Scholar 

  46. Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, G., P. S. Kemp, J. A. Hwu, A. M. Beagley, P. V. Bayly, and L. A. Taber. Opening angles and material properties of the early embryonic chick brain. J. Biomech. Eng.-Trans. ASME 132:071013, 2010.

    Article  Google Scholar 

  49. Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Igor Efimov for access to his OCT system, as well as Anjul Davis at Thorlabs for access to the integrated microscope + OCT system that aided our isolated sample imaging. We also thank Dmitry Voronov and Dylan McCreedy for sectioning and staining advice, in addition to Shelly Sakiyama-Elbert for microscope access. Finally, we acknowledge Guy Genin for helpful insight into our stress analysis of the brain. This study was supported by NSF grant DMS-0540701 (LAT), NIH grant R01 GM075200 (LAT), and fellowships for BAF from NIH T90 DA022871 and the Mallinckrodt Institute of Radiology, Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Taber.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2056 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filas, B.A., Bayly, P.V. & Taber, L.A. Mechanical Stress as a Regulator of Cytoskeletal Contractility and Nuclear Shape in Embryonic Epithelia. Ann Biomed Eng 39, 443–454 (2011). https://doi.org/10.1007/s10439-010-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0171-7

Keywords

Navigation