Skip to main content

Pseudomonas and other Microbes in Disease-Suppressive Soils

  • Chapter
  • First Online:
Organic Fertilisation, Soil Quality and Human Health

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 9))

Abstract

Soil-borne phytopathogens cause extensive damage to cultivated plants worldwide, resulting in yield loss worth billions of Euros each year. Soil fumigation is the most effective chemical treatment but is too expensive for many crops, and fumigants like methyl bromide are being phased out for environmental reasons. In this context, much is to be learned from disease-suppressive soils, where susceptible plants are protected from soil-borne pathogens by the indigenous microbiota, because these microbial interactions may be exploited to design sustainable crop protection strategies for ordinary farm soils. However, our knowledge of plant-protecting microorganisms and biocontrol mechanisms involved in soil suppressiveness remain very fragmented, as most knowledge on disease suppressive soils comes from studies restricted to individual plant-protecting microbial populations, mostly fluorescent Pseudomonas species. The phenomenon of disease suppressiveness remains therefore poorly understood, even in the most studied cases such as suppressiveness to wheat take-all.

We reviewed the respective biocontrol contributions of fluorescent pseudomonads and other plant-protecting microorganisms in disease-suppressive soils. The ability to inhibit soil-borne pathogens and to protect plants occurs both in Pseudomonas and non-Pseudomonas microorganisms, including diverse bacteria and fungi, and both play important roles in soil suppressiveness. In Pseudomonas, antibiosis and competition were shown to be important mechanisms of pathogen suppression, though direct effects on plant, e.g. induced systemic resistance, phytohormone interference and plant-growth promotion, were also reported. These types of mechanisms occur also in non-Pseudomonas biocontrol microbes, some of them also displaying hyperparasitism in certain types of suppressive soils.

This review shows that in suppressive soils where Pseudomonas play an important role, the roles of non-Pseudomonas microorganisms were often neglected, and vice versa. Yet, Pseudomonas and other microorganisms may interact with each other in the rhizosphere and with the plant, and some recent studies indicate that disease suppressiveness is an emerging soil property that can typically result from these multiple interactions. In conclusion, we propose that a parallel assessment of Pseudomonas and non-Pseudomonas microorganisms in suppressive soils, e.g. using microarrays or metagenomics, may bring a better understanding of disease suppressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie C, Edel V, Alabouvette C (1998) Soil suppressiveness to Fusarium wilt: influence of a cover-plant on density and diversity of Fusarium populations. Soil Biol Biochem 30:643–649

    Article  CAS  Google Scholar 

  • Agrios GN (1997) Plant pathology. Academic, San Diego

    Google Scholar 

  • Alabouvette C (1986) Fusarium-wilt suppressive soils from the Châteaurenard region – review of a 10-year study. Agronomie 6:273–284

    Article  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    PubMed  CAS  Google Scholar 

  • Anderson LM, Stockwell VO, Loper JE (2004) An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology 94:1228–1234

    Article  PubMed  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea MJ (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900

    Article  PubMed  CAS  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. Freeman, San Francisco

    Google Scholar 

  • Bally R, Elmerich C (2007) Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 171–190

    Google Scholar 

  • Banik S, Dey B (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Bansal RK, Dahiya RS, Narula N, Jain RK (2005) Management of Meloidogyne incognita in cotton, using strains of the bacterium Gluconacetobacter diazotrophicus. Nematol Medit 33:101–105

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt A-Y, Martin F, Guillot L, Sarniguet A (2009) The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol 181:435–447

    Article  PubMed  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Becker DM, Kinkel LL, Schottel JL (1997) Evidence for interspecies communication and its potential role in pathogen suppression in a naturally occurring disease suppressive soil. Can J Microbiol 43:985–990

    Article  CAS  Google Scholar 

  • Benhamou N, Gagné S, Le Quéré D, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56

    Article  PubMed  CAS  Google Scholar 

  • Benítez M-S, McSpadden Gardener BB (2009) Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Appl Environ Microbiol 75:915–924

    Article  PubMed  CAS  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Bates DB (1984) Ionophores: their effect on production efficiency and mode of action. J Anim Sci 58:1465–1483

    PubMed  CAS  Google Scholar 

  • Berry LA, Jones EE, Deacon JW (1993) Interaction of the mycoparasite Pythium oligandrum with other Pythium species. Biocontrol Sci Technol 3:247–260

    Article  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

    Article  CAS  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Sajjad MM, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  PubMed  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 18:710–721

    Article  PubMed  CAS  Google Scholar 

  • Bordoloi GN, Kumari B, Guha A, Thakur D, Bordoloi M, Roy MK, Bora TC (2002) Potential of a novel antibiotic, 2-methylheptyl isonicotinate, as a biocontrol agent against fusarial wilt of crucifers. Pest Manag Sci 58:297–302

    Article  PubMed  CAS  Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172

    Article  PubMed  CAS  Google Scholar 

  • Bowers JH, Kinkel LL, Jones RK (1996) Influence of disease-suppressive strains of Streptomyces on the native Streptomyces community in soil as determined by the analysis of cellular fatty acids. Can J Microbiol 42:27–37

    Article  PubMed  CAS  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, McSpadden Gardener BB, Coenen C (2008) 2,4-diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Budi SW, van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15:191–199

    Article  Google Scholar 

  • Burr TJ, Reid CL (1994) Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45:213–219

    Google Scholar 

  • Carroll H, Moënne-Loccoz Y, Dowling DN, O’Gara F (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar-beets. Appl Environ Microbiol 61:3002–3007

    PubMed  CAS  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5b, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Cavaglieri L, Orlando J, Rodríguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754

    Article  PubMed  CAS  Google Scholar 

  • Cavaglieri LR, Passone A, Etcheverry MG (2004) Correlation between screening procedures to select root endophytes for biological control of Fusarium verticillioides in Zea mays L. Biol Control 31:259–267

    Article  Google Scholar 

  • Cazar ME, Schmeda-Hirschmann G, Astudillo L (2005) Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J Microbiol Biotechnol 21:1067–1075

    Article  CAS  Google Scholar 

  • Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A (2002) Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. Eur J Plant Pathol 108:449–459

    Article  CAS  Google Scholar 

  • Chen F, Guo YB, Wang JH, Li JY, Wang HM (2007) Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis 91:957–963

    Article  CAS  Google Scholar 

  • Chen ZX, Dickson DW, McSorley R, Mitchell DJ, Hewlett TE (1996) Suppression of Meloidogyne arenaria race 1 by soil application of endospores of Pasteuria penetrans. J Nematol 28:159–168

    PubMed  CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  PubMed  CAS  Google Scholar 

  • Cook JR, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Cosette P, Rebuffat S, Bodo B, Molle G (1999) The ion-channel activity of longibrachins LGA I and LGB II: effects of Pro-2/Ala and Gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels. Biochim Biophys Acta – Biomembr 1461:113–122

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Dunne C, O’Gara F (1997a) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440

    Article  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dowling DN, O’Gara F (1997b) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997c) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • de Boer W, Wagenaar A-M, Klein Gunnewiek PJA, van Veen JA (2007) In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol Ecol 59:177–185

    Article  PubMed  CAS  Google Scholar 

  • De Marco J, Felix C (2002) Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ broom disease. BMC Biochem 3:3

    Article  PubMed  Google Scholar 

  • de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    Article  PubMed  Google Scholar 

  • Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Aspects 152:3–10

    Article  CAS  Google Scholar 

  • Dicklow MB, Acosta N, Zuckerman BM (1993) A novel Streptomyces species for controlling plant-parasitic nematodes. J Chem Ecol 19:159–173

    Article  Google Scholar 

  • Djonovic S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. Mol Plant Pathol 8:469–480

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande BA, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162

    Article  Google Scholar 

  • Domínguez J, Negrín MA, Rodríguez CM (2001) Aggregate water-stability, particle-size and soil solution properties in conducive and suppressive soils to Fusarium wilt of banana from Canary Islands (Spain). Soil Biol Biochem 33:449–455

    Article  Google Scholar 

  • Domínguez J, Negrín MA, Rodríguez CM (2003) Evaluating soil sodium indices in soils of volcanic nature conducive or suppressive to Fusarium wilt of banana. Soil Biol Biochem 35:565–575

    Article  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  PubMed  CAS  Google Scholar 

  • Dong Y-H, Xu J-L, Li X-Z, Zhang L-H (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  PubMed  CAS  Google Scholar 

  • Dong Y-H, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  PubMed  CAS  Google Scholar 

  • Dubeikovsky AN, Mordukhova EA, Kochetkov V, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  • Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Eur J Plant Pathol 99:277–289

    CAS  Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    Article  CAS  Google Scholar 

  • Duponnois R, Mateille T, Gueye M (1995) Biological characteristics and effects of two strains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Sci Technol 5:517–526

    Article  Google Scholar 

  • Duponnois R, Fargette M, Fould S, Thioulouse J, Davies KG (2000) Diversity of the bacterial hyperparasite Pasteuria penetrans in relation to root-knot nematodes (Meloidogyne spp.) control on Acacia holosericea. Nematology 2:435–442

    Article  Google Scholar 

  • Dutky EM, Sayre RM (1978) Some factors affecting infection of nematodes by bacterial spore parasite Bacillus penetrans. J Nematol 10:285–285

    Google Scholar 

  • Edel V, Steinberg C, Gautheron N, Recorbet G, Alabouvette C (2001) Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiol Ecol 36:61–71

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Elad Y, Kirshner B, Yehuda N, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl 43:241–251

    Article  Google Scholar 

  • El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2:274–284

    Article  PubMed  CAS  Google Scholar 

  • Eparvier A, Alabouvette C (1994) Use of ELISA and GUS-transformed strains to study competition between pathogenic and nonpathogenic Fusarium oxysporum for root colonization. Biocontrol Sci Technol 4:35–47

    Article  Google Scholar 

  • Estevez de Jensen C, Percich JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crop Res 74:107–115

    Article  Google Scholar 

  • Etebarian HR (2006) Evaluation of Streptomyces strains for biological control of charcoal stem rot of melon caused by Macrophomina phaseolina. Plant Pathol J 5:83–87

    Article  Google Scholar 

  • Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME (2007) Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J Phytopathol 155:342–349

    Article  CAS  Google Scholar 

  • Fang JG, Tsao PH (1994) Evaluation of Pythium nunn as a potential biocontrol agent against Phytophthora root rots of azalea and sweet orange. Phytopathology 85:29–36

    Article  Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878

    PubMed  CAS  Google Scholar 

  • Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656

    Article  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496

    Article  Google Scholar 

  • Garbeva P, Postma J, van Veen JA, van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  PubMed  CAS  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257–270

    Article  Google Scholar 

  • Gerth K, Trowitzsch W, Wray V, Hofle G, Irschik H, Reichenbach H (1982) Pyrrolnitrin from Myxococcus fulvus (Myxobacterales). J Antibiot 35:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Saha KC (1993) Effects of inoculation with N2-fixing cyanobacteria on the nitrogenase activity in soil and rhizosphere of wetland rice (Oryza sativa L.). Biol Fertil Soils 16:16–20

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Goodridge LD (2004) Bacteriophage biocontrol of plant pathogens: fact or fiction? Trends Biotechnol 22:384–385

    Article  PubMed  CAS  Google Scholar 

  • Griffiths B, Robinson D (1992) Root-induced nitrogen mineralisation: a nitrogen balance model. Plant Soil 139:253–263

    Article  CAS  Google Scholar 

  • Gupta VP, Tewari SK, Govindaiah BAK (1999) Ultrastructure of mycoparasitism of Trichoderma, Gliocladium and Laetisaria species on Botryodiplodia theobromae. J Phytopathol 147:19–24

    Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza AN, Mehouachi J, R. Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005a) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221

    Article  PubMed  CAS  Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005b) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  PubMed  CAS  Google Scholar 

  • Helbig J (2001) Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol 149:265–273

    Article  Google Scholar 

  • Heulin T, Guckert A, Balandreau J (1987) Stimulation of root exudation of rice seedlings by Azospirillum strains: carbon budget under gnotobiotic conditions. Biol Fertil Soils 4:9–17

    Google Scholar 

  • Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698

    Article  PubMed  CAS  Google Scholar 

  • Hjort K, Lembke A, Speksnijder A, Smalla K, Jansson JK (2007) Community structure of actively growing bacterial populations in plant pathogen suppressive soil. Microb Ecol 53:399–413

    Article  PubMed  Google Scholar 

  • Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  PubMed  CAS  Google Scholar 

  • Höper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biol Biochem 27:955–967

    Article  Google Scholar 

  • Hopwood DA (2003) Antibiotics actions, origins, resistance. Science 301:1850–1851

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    Article  PubMed  CAS  Google Scholar 

  • Hwang J, Benson DM (2002) Biocontrol of Rhizoctonia stem and root rot of Poinsettia with Burkholderia cepacia and binucleate Rhizoctonia. Plant Dis 86:47–53

    Article  Google Scholar 

  • Hwang J, Benson DM (2003) Expression of induced systemic resistance in poinsettia cuttings against Rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia. Biol Control 27:73–80

    Article  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  PubMed  CAS  Google Scholar 

  • Jager G, Velvis H (1986) Biological control of Rhizoctonia solani on potatoes by antagonists. 5. The effectiveness of three isolates of Verticillium biguttatum as inoculum for seed tubers and of a soil treatment with a low dosage of pencycuron. Neth J Plant Pathol 92:231–238

    Article  CAS  Google Scholar 

  • Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors ? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • John UP, Nagley P (1986) Aminoacid substitutions in mitochondrial ATPase subunit-6 of Saccharomyces cerevisiae leading to oligomycin resistance. FEBS Lett 207:79–83

    Article  PubMed  CAS  Google Scholar 

  • Johnsen K, Enger O, Jacobsen CS, Thirup L, Torsvik V (1999) Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol 65:1786–1788

    PubMed  CAS  Google Scholar 

  • Jorgenson EC (1970) Antagonistic interaction of Heterodera schachtii Schmidt and Fusarium oxysporum (Woll.) on sugarbeets. J Nematol 2:393–398

    PubMed  CAS  Google Scholar 

  • Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 – taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol Res 151:433–439

    Article  PubMed  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kamilova K, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Kang YW, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947

    PubMed  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0 – importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Kerry BR (1982) The decline of Heterodera avenae populations. EPPO Bull 12:491–496

    Article  Google Scholar 

  • Khan NI, Filonow AB, Singleton LL (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Technol 7:11–22

    Article  Google Scholar 

  • Kilic-Ekici O, Yuen GY (2003) Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93:1103–1110

    Article  PubMed  Google Scholar 

  • Kim B, Moon SS, Hwang BK (1999) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858

    CAS  Google Scholar 

  • Kinkel LL, Bowers JH, Shimizu K, Neeno-Eckwall EC, Schottel JL (1998) Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can J Microbiol 44:768–776

    PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Guglielmoni M, Clarke BB (1995) Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biol Biochem 27:1479–1487

    Article  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marečková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237

    Article  PubMed  CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–368

    Article  PubMed  CAS  Google Scholar 

  • Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel JC (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125

    Article  Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Phytopathology 88:1022–1028

    Google Scholar 

  • Larkin RP, Fravel DR (1999) Mechanisms of action and dose-response relationships governing biological control of fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819

    Article  Google Scholar 

  • Lebreton L, Lucas P, Dugas F, Guillerm AY, Schoeny A, Sarniguet A (2004) Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Environ Microbiol 6:1174–1185

    Article  PubMed  Google Scholar 

  • Lee HB, Kim Y, Kim JC, Choi GJ, Park SH, Kim CJ, Jung HS (2005) Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 99:836–843

    Article  PubMed  CAS  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb Technol 38:990–997

    Article  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent pseudomonas and nonpathogenic Fusarium. Crop Prot 10:279–286

    Article  Google Scholar 

  • Lemanceau P, Alabouvette C (1993) Suppression of Fusarium wilt by fluorescent pseudomonads – mechanisms and applications. Biocontrol Sci Tech 3:219–234

    Article  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Maurhofer M, Défago G (2006) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 231–267

    Chapter  Google Scholar 

  • Li W, Roberts DP, Dery PD, Meyer SLF, Lohrke S, Lumsden RD, Hebbar KP (2002) Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21:129–135

    Article  Google Scholar 

  • Li GQ, Huang HC, Acharya SN, Erickson RS (2005) Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathol 54:204–211

    Article  Google Scholar 

  • Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY (2008) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98:695–701

    Article  PubMed  CAS  Google Scholar 

  • Lian LH, Tian BY, Xiong R, Zhu MZ, Xu J, Zhang KQ (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz R, Dupler M, Elad Y, Baker R (1984) Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi. Can J Microbiol 30:1482–1487

    Article  Google Scholar 

  • Lim H-S, Kim Y-S, Kim S-D (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Lippmann B, Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. I. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew Bot 69:31–36

    CAS  Google Scholar 

  • Liu DQ, Anderson NA, Kinkel LL (1995) Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85:827–831

    Article  Google Scholar 

  • Loper JE, Ishimaru CA, Carnegie SR, Vanavichit A (1993) Cloning and characterization of aerobactin biosynthesis genes of the biological control agent Enterobacter cloacae. Appl Environ Microbiol 59:4189–4197

    PubMed  CAS  Google Scholar 

  • Lorang JM, Liu D, Anderson NA, Schottel JL (1995) Identification of potato scab inducing and suppressive species of Streptomyces. Phytopathology 85:261–268

    Article  Google Scholar 

  • Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout CJ (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235

    Article  CAS  Google Scholar 

  • Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455

    Article  PubMed  CAS  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  PubMed  CAS  Google Scholar 

  • Mateille T, Cadet P, Fargette M (2008) Control and management of plant-parasitic nematode communities in a soil conservation approach. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 79–97

    Google Scholar 

  • Mathre DE, Johnston RH, Grey WE (1998) Biological control of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici under field conditions using a Phialophora sp. Biocontrol Sci Technol 8:449–457

    Article  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232

    Article  CAS  Google Scholar 

  • Mazurier S, Lemunier M, Siblot S, Mougel C, Lemanceau P (2004) Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. FEMS Microbiol Ecol 49:455–467

    Article  PubMed  CAS  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Anton Leeuw 81:557–564

    Article  CAS  Google Scholar 

  • Mazzola M, Gu YH (2000) Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114–119

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61:2554–2559

    PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  PubMed  CAS  Google Scholar 

  • Medina-Martinez MS, Uyttendaele M, Rajkovic A, Nadal P, Debevere J (2007) Degradation of N-acyl-L-homoserine lactones by Bacillus cereus in culture media and pork extract. Appl Environ Microbiol 73:2329–2332

    Article  PubMed  CAS  Google Scholar 

  • Meera MS, Shivanna MB, Kageyama K, Hyakumachi M (1995) Responses of cucumber cultivars to induction of systemic resistance against anthracnose by plant growth promoting fungi. Eur J Plant Pathol 101:421–430

    Article  Google Scholar 

  • Messiha N, van Diepeningen A, Farag N, Abdallah S, Janse J, van Bruggen A (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Article  Google Scholar 

  • Metcalf DA, Wilson CR (2001) The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol 50:249–257

    Article  CAS  Google Scholar 

  • Milner JL, SiloSuh L, Lee JC, He HY, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    PubMed  CAS  Google Scholar 

  • Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  PubMed  CAS  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170

    Article  CAS  Google Scholar 

  • Moënne-Loccoz Y, McHugh B, Stephens PM, McConnell FI, Glennon JD, Dowling DN, O’Gara F (1996) Rhizosphere competence of fluorescent Pseudomonas sp. B24 genetically modified to utilise additional ferric siderophores. FEMS Microbiol Ecol 19:215–225

    Article  Google Scholar 

  • Moënne-Loccoz Y, Tichy HV, O’Donnell A, Simon R, O’Gara F (2001) Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings. Appl Environ Microbiol 67:3418–3425

    Article  PubMed  Google Scholar 

  • Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32:1637–1642

    Article  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen-fixation. Plant Cell 7:869–885

    Article  PubMed  CAS  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1998) Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiol Ecol 27:365–380

    Article  CAS  Google Scholar 

  • Neeno-Eckwall EC, Kinkel LL, Schottel JL (2001) Competition and antibiosis in the biological control of potato scab. Can J Microbiol 47:332–340

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores – structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Neipp PW, Becker JO (1999) Evaluation of biocontrol activity of rhizobacteria from Beta vulgaris against Heterodera schachtii. J Nematol 31:54–61

    PubMed  CAS  Google Scholar 

  • Oberhansli T, Défago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279

    PubMed  CAS  Google Scholar 

  • Olatinwo R, Yin B, Becker JO, Borneman J (2006) Suppression of the plant-parasitic nematode Heterodera schachtii by the fungus Dactylella oviparasitica. Phytopathology 96:111–114

    Article  PubMed  Google Scholar 

  • Omarjee J, Balandreau J, Spaull VW, Cadet P (2008) Relationships between Burkholderia populations and plant parasitic nematodes in sugarcane. Appl Soil Ecol 39:1–14

    Article  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Schäfer M, Budzikiewicz H, Thonart P (2007) Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microbiol Ecol 55:280–292

    Article  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of β-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC, Anas O, Fernando DG (1992) Biological control of Pythium damping-off by seed treatment with Pseudomonas putida – relationship with ethanol production by pea and soybean seeds. Biocontrol Sci Technol 2:193–201

    Article  Google Scholar 

  • Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C, Velásquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53:2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Persson L, Larsson-Wikstrom M, Gerhardson B (1999) Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Dis 83:1108–1112

    Article  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  PubMed  CAS  Google Scholar 

  • Picard C, Frascaroli E, Bosco M (2004) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing rhizobacteria are differentially affected by the genotype of two maize inbred lines and their hybrid. FEMS Microbiol Ecol 49:207–215

    Article  PubMed  CAS  Google Scholar 

  • Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133:215–218

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, van Pelt JA, Verhagen BWM, Ton J, van Wees SCM, Leon-Kloosterziel KM, van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54

    CAS  Google Scholar 

  • Pinon D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, Solas MT, Legaz ME (2002) Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 153:345–351

    Article  PubMed  CAS  Google Scholar 

  • Postma J, Scheper RWA, Schilder MT (2010) Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biol Biochem 42:804–812

    Article  CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton Leeuw 81:537–547

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Alabouvette C, Steinberg C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2001) Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhlD with plant polyketide synthases. Mol Plant-Microbe Interact 14:639–652

    Article  PubMed  CAS  Google Scholar 

  • Ramette A, Frapolli M, Défago G, Moënne-Loccoz Y (2003a) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant-Microbe Interact 16:525–535

    Article  PubMed  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2003b) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43

    Article  PubMed  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    Article  PubMed  CAS  Google Scholar 

  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188

    Article  PubMed  CAS  Google Scholar 

  • Ramos B, Lucas García JA, Probanza A, Barrientos ML, Gutierrez Mañero FJ (2003) Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environ Exp Bot 49:61–68

    Article  Google Scholar 

  • Recht MI, Douthwaite S, Puglisi JD (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Défago G, Moënne-Loccoz Y (2004) Comparison of ATPase-encoding type III secretion system hrcN genes in biocontrol fluorescent pseudomonads and in phytopathogenic proteobacteria. Appl Environ Microbiol 70:5119–5131

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Mol Plant-Microbe Interact 18:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872

    Article  PubMed  CAS  Google Scholar 

  • Rimé D, Nazaret S, Gourbière F, Cadet P, Moënne-Loccoz Y (2003) Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane. Phytopathology 93:1437–1444

    Article  PubMed  Google Scholar 

  • Roberts DP, McKenna LF, Lakshman DK, Meyer SLF, Kong H, de Souza JT, Lydon J, Baker CJ, Buyer JS, Chung S (2007) Suppression of damping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biol Biochem 39:2275–2288

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Roget DK (1995) Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South Australia. Aust J Exp Agric 35:1009–1013

    Article  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Kinkel LL, Bowers JH, Schottel JL (1996) Use of repetitive intergenic DNA sequences to classify pathogenic and disease-suppressive Streptomyces strains. Appl Environ Microbiol 62:3489–3493

    PubMed  CAS  Google Scholar 

  • Samac DA, Kinkel LL (2001) Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 235:35–44

    Article  CAS  Google Scholar 

  • Sanguin H, Kroneisen L, Gazengel K, Kyselková M, Remenant B, Prigent-Combaret C, Grundmann GL, Sarniguet A, Moënne-Loccoz Y (2008) Development of a 16S rRNA microarray approach for the monitoring of rhizosphere Pseudomonas populations associated with the decline of take-all disease of wheat. Soil Biol Biochem 40:1028–1039

    Article  CAS  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707

    Article  PubMed  CAS  Google Scholar 

  • Sarniguet A, Lucas P (1992) Evaluation of populations of fluorescent pseudomonads related to decline of take-all patch on turfgrass. Plant Soil 145:11–15

    Article  Google Scholar 

  • Sayeed AM, Siddiqui ZA (2008) Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J Gen Plant Pathol 74:53–60

    Article  Google Scholar 

  • Sayre RM, Wergin WP (1977) Bacterial parasite of a plant nematode – morphology and ultrastructure. J Bacteriol 129:1091–1101

    PubMed  CAS  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    Article  CAS  Google Scholar 

  • Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420

    Article  PubMed  Google Scholar 

  • Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:102–112

    Article  Google Scholar 

  • Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM (2008) Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environ Microbiol 10:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Schreiner K, Hagn A, Kyselková M, Moënne-Loccoz Y, Munch JC, Schloter M (2010) Comparison of barley succession and take-all disease as environmental factors shaping the rhizobacterial community during take-all decline. Appl Environ Microbiol 76:4703–4712

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li JP, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Sharga BM, Lyon GD (1998) Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Can J Microbiol 44:777–783

    PubMed  CAS  Google Scholar 

  • Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104:631–643

    Article  CAS  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  PubMed  CAS  Google Scholar 

  • Shen SS, Piao FZ, Lee BW, Park CS (2007) Characterization of antibiotic substance produced by Serratia plymuthica A21-4 and the biological control activity against pepper Phytophthora blight. Plant Pathol J 23:180–186

    Article  CAS  Google Scholar 

  • Shiomi Y, Nishiyama M, Onizuka T, Marumoto T (1999) Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl Environ Microbiol 65:3996–4001

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2001) Suppression of the root rot–root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237:81–89

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He HY, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed  CAS  Google Scholar 

  • Simon A, Sivasithamparam K (1989) Pathogen suppression – a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biol Biochem 21:331–337

    Article  Google Scholar 

  • Smiley RW (1979) Wheat-rhizoplane pseudomonads as antagonists of Gaeumannomyces graminis. Soil Biol Biochem 11:371–376

    Article  CAS  Google Scholar 

  • Smith J, Putnam A, Nair M (1990) In vitro control of Fusarium diseases of Asparagus officinalis L. with a Streptomyces or its polyene antibiotic, faeriefungin. J Agric Food Chem 38:1729–1733

    Article  Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Spaull VW, Cadet P (1990) Nematodes parasites of sugarcane. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 461–491

    Google Scholar 

  • Stabb EV, Jacobson LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    PubMed  CAS  Google Scholar 

  • Steinberg C, Edel V, Gautheron N, Abadie C, Vallaeys T, Alabouvette C (1997) Phenotypic characterization of natural populations of Fusarium oxysporum in relation to genotypic characterization. FEMS Microbiol Ecol 24:73–85

    Article  CAS  Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Stirling GR, Mankau R (1979) Mode of parasitism of Meloidogyne and other nematode eggs by Dactylella oviparasitica. J Nematol 11:282–288

    PubMed  CAS  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 92:1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Stotzky G, Martin RT (1963) Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America. Plant Soil 18:317–337

    Article  CAS  Google Scholar 

  • Stutz E, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Article  Google Scholar 

  • Stutz E, Kahr G, Défago G (1989) Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biol Biochem 21:361–366

    Article  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  PubMed  CAS  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52:137–168

    Article  PubMed  CAS  Google Scholar 

  • Thompson DC, Kobayashi DY, Clarke BB (1998) Suppression of summer patch by rhizosphere competent bacteria and their establishment on Kentucky bluegrass. Soil Biol Biochem 30:257–263

    Article  CAS  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Troxler J, Zala M, Moënne-Loccoz Y, Keel C, Défago G (1997a) Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHA0 in the surface horizon of large outdoor lysimeters. Appl Environ Microbiol 63:3776–3782

    PubMed  CAS  Google Scholar 

  • Troxler J, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1997b) Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol Ecol 24:287–287

    CAS  Google Scholar 

  • Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322

    Article  PubMed  CAS  Google Scholar 

  • van Dijk K, Nelson EB (1998) Inactivation of seed exudate stimulants of Pythium ultimum sporangium germination by biocontrol strains of Enterobacter cloacae and other seed-associated bacteria. Soil Biol Biochem 30:183–192

    Article  Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed  Google Scholar 

  • van Elsas JD, Speksnijder AJ, van Overbeek LS (2008) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Methods 75:515–522

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Viterbo ADA, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Appl Soil Ecol 8:737–746

    CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress back root-rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Walsh UF, Moënne-Loccoz Y, Tichy H-V, Gardner A, Corkery DM, Lorkhe S, O’Gara F (2003) Residual impact of the biocontrol inoculant Pseudomonas fluorescens F113 on the resident population of rhizobia nodulating a red clover rotation crop. Microb Ecol 45:145–155

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Wang CX, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    Article  CAS  Google Scholar 

  • Weibelzahl-Fulton E, Dickson W, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field. J Nematol 28:43–49

    PubMed  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20

    Article  PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (1999) Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434–440

    Article  PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2000) Transfer of biological soil suppressiveness against Heterodera schachtii. Phytopathology 90:401–406

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    Article  CAS  Google Scholar 

  • Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  PubMed  CAS  Google Scholar 

  • Yan ZN, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  PubMed  CAS  Google Scholar 

  • Yin B, Valinsky L, Gao XB, Becker JO, Borneman J (2003a) Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Appl Environ Microbiol 69:1573–1580

    Article  PubMed  CAS  Google Scholar 

  • Yin B, Valinsky L, Gao XB, Becker JO, Borneman J (2003b) Identification of fungal rDNA associated with soil suppressiveness against Heterodera schachtii using oligonucleotide fingerprinting. Phytopathology 93:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Yoon J-H, Lee J-K, Jung S-Y, Kim J-A, Kim H-K, Oh T-K (2006) Nocardioides kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol 56:1783–1787

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181–187

    Article  PubMed  CAS  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    PubMed  CAS  Google Scholar 

  • Zhang L, Birch RG (1997a) Mechanisms of biocontrol by Pantoea dispersa of sugar cane leaf scald disease caused by Xanthomonas albilineans. J Appl Microbiol 82:448–454

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Birch RG (1997b) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci USA 94:9984–9989

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by CORESTA (Paris, France), the bi-national PHC program Barrande (Agentura Inovačního Podnikání, Prague, Czech Republic, and EGIDE), the Ministry of Agriculture of the Czech Republic (project NAZV QH 92151), the Ministère Français de la Recherche, the Bureau des Ressources Génétiques (BRG; Paris, France), and the European Union (FW6 STREP project MicroMaize). We thank K. Schreiner, M. Schloter (German Research Center for Environmental Health, Helmholtz Zentrum München, Germany), M. Frapolli and G. Défago (Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland) for sharing unpublished information, and C. Prigent-Combaret (UMR CNRS 5557 Ecologie microbienne, Université Lyon 1, Villeurbanne, France) for providing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Moënne-Loccoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kyselková, M., Moënne-Loccoz, Y. (2012). Pseudomonas and other Microbes in Disease-Suppressive Soils. In: Lichtfouse, E. (eds) Organic Fertilisation, Soil Quality and Human Health. Sustainable Agriculture Reviews, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4113-3_5

Download citation

Publish with us

Policies and ethics