Skip to main content

Carbon

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

All cyanobacteria are actually or potentially photolithotrophic, with the exception of a recently discovered non-auotrophic free-living diazotroph which is presumably a (photo-)organotroph. Photolithotrophy involves CO2 assimilation by Form 1A or Form 1B Rubiscos with low affinity for CO2 and a small discrimination between CO2 and O2 and, at present CO2 levels, invariably involves an inorganic carbon concentrating mechanism (CCM). About half of the cyanobacterial strains tested are facultatively photo-organotrophic, a few of which are also facultative chemo-organotrophs; the rest are obligate photolithotrophs. In the natural environment the best-established cases of photo- or chemo-organotrophy are in symbioses of diazotrophic cyanobacteria with organisms that are already photosynthetic. The quantitative contribution of dissolved organic matter to otherwise photolithotrophically growing cyanobacteria is unclear. Extent cyanobacteria are involved in both biologically mediated calcification (direct role of the organism) and biologically related calcification (indirect role of the organism). The timing of the evolution of cyanobacterial CCM is unclear: the CCM probably evolved in low-CO2 episodes in the late Neoproterozoic or the Carboniferous, with spread to all cyanobacteria in the already established major clades by horizontal gene transfer. Cyanobacteria may be the last surviving photolithotrophs as the sun emits more energy and (by whatever mechanism) there is a decreased greenhouse gas, including CO2, content, of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DG, Duggan PS (2008) Cyanobacterium-bryophyte symbioses. J Exp Bot 59:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol 87:269–283

    Article  CAS  Google Scholar 

  • Arnon RMW, Benner R (1994) Rapid cycling of high-molecular-weight organic matter in the ocean. Nature 369:549–552

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403

    Article  Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase-oxygenase from Anabaena variabilis. Arch Biochem Biophys 201:247–254

    Article  PubMed  CAS  Google Scholar 

  • Badger M-R, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Hanson M, Price GD (2002) Evolution and diversity of CO2-concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  • Bañares-España E, López-Rodas V, Salgado C, Dostas E, Flores-Moya A (2006) Inter-strain variability in the photosynthetic use of inorganic carbon, exemplified by the pH compensation point, in the cyanobacterium Microcystis aeruginosa. Aquat Bot 85:159–162

    Article  CAS  Google Scholar 

  • Barkan E, Luz B, Lazar B (2001) Dynamics of the carbon dioxide system in the Dead Sea. Geochim Cosmochim Acta 65:355–368

    Article  CAS  Google Scholar 

  • Beardall J (1991) Effects of photon flux-density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J Plankton Res 13:S133–S141

    Google Scholar 

  • Beardall J, Allen D, Bragg J, Finkel ZV, Flynn KV, Quigg A, Rees TAV, Richardson A, Raven JA (2009) Allometry and stoichometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181:295–309

    Article  PubMed  CAS  Google Scholar 

  • Benzerana K, Menguy N, López-Garcia P, Yoon T-H, Vazmiercak J, Tylsczak T, Guyot F, Brown GE Jr (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440–9445

    Article  CAS  Google Scholar 

  • Berman-Frank I, Rosenberg G, Levitan O, Hanraty L, Mari X (2007) Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium. Environ Microbiol 9:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment. Water, air and geochemical cycles. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Birmingham BC, Colman B (1979) Measurement of carbon dioxide compensation points for freshwater algae. Plant Physiol 64:892–895

    Article  PubMed  CAS  Google Scholar 

  • Black KG, Osborne BA (2004) An assessment of photosynthetic downregulation in cyanobacteria from the Gunnera-Nostoc symbiosis. New Phytol 162:125–132

    Article  CAS  Google Scholar 

  • Black KG, Parsons R, Osborne BA (2002) Uptake and metabolism of glucose in the Nostoc-Gunnera symbiosis. New Phytol 153:297–305

    Article  CAS  Google Scholar 

  • Bockholt R, Scholter-Beck G, Pistorius EK (1996) Construction and partial characterization of an L-amino-acid oxidase-free Synechococcus PCC 7942 mutant and localization of the L-amino-acid oxidase in the corresponding wild-type. Biochim Biophys Acta 1307:111–121

    Article  PubMed  Google Scholar 

  • Breecker DO, Sharp ZD, McFadden LD (2010) Atmospheric CO2 concentrations during greenhouse climates were similar to those predicted for A.D. 2100. Proc Natl Acad Sci USA 107(2):576–580

    Article  PubMed  CAS  Google Scholar 

  • Brocks JJ, Pearson A (2005) Building the biomarker tree of life. Rev Mineral Geochem 59:233–258

    Article  CAS  Google Scholar 

  • Brown CM, MacKinnon JD, Cockshutt AM, Villareal TA, Campbell DA (2008) Flux capacities and acclimation cost in Trichodesmium from the Gulf of Mexico. Mar Biol 154:413–422

    Article  Google Scholar 

  • Brummer F, Pfannkunchen M, Bultz A, Hausen T, Thiel V (2008) Light inside sponges. J Exp Mar Biol Ecol 367:61–64

    Article  Google Scholar 

  • Burns RA, MacDonald CD, McGinn PJ, Campbell DA (2005) Inorganic carbon repletion disrupts photosynthetic acclimation to low temperature in the cyanobacterium Synechococcus elongatus. J Phycol 41:322–334

    Article  CAS  Google Scholar 

  • Burns RA, MacKenzie TDB, Campbell DA (2006) Inorganic carbon repletion constrains steady-state light acclimation in the cyanobacterium Synechococcus elongatus. J Phycol 42:610–621

    Article  CAS  Google Scholar 

  • Caldeira K, Kasting JF (1992) The life span of the biosphere of the biosphere revisited. Nature 360:721–723

    Article  PubMed  CAS  Google Scholar 

  • Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res II Curr Top Oceanogr 56:578–590

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    Article  PubMed  CAS  Google Scholar 

  • Corsetti FA, Awramik SM, Pierce D (2003) A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Natl Acad Sci USA 100:4399–4404

    Article  PubMed  CAS  Google Scholar 

  • Cowan IR, Lange OL, Green TGA (1992) Carbon dioxide exchange in lichens. Determination of transport and carboxylation characteristics. Planta 187:292–294

    Article  Google Scholar 

  • Cox GC, Hiller RG, Larkum AWD (1965) An unusual cyanophyta, containing phycourobilin and symbiotic with ascidians and sponges. Mar Biol 89:149–163

    Article  Google Scholar 

  • Cumino AC, Marcozzi C, Barreiro R, Salerno GL (2007) Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation. Plant Physiol 143:1385–1397

    Article  PubMed  CAS  Google Scholar 

  • Dittrich M, Obst M (2004) Are picoplankton responsible for calcite precipitation in lakes? Ambio 33:559–564

    PubMed  Google Scholar 

  • Dittrich M, Kurz P, Wehrli B (2004) The role of picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol J 21:45–53

    Article  CAS  Google Scholar 

  • Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18

    Article  CAS  Google Scholar 

  • Doney SC, Tilbrook B, Roy S, Metzl N, Le Quéré C, Hood M, Feely RA, Bakker RA (2008) Surface-ocean CO2 variability and vulnerability. Deep Sea Res II Top Stud Oceanogr 56:504–511

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Strewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 530–559, 989 pp

    Google Scholar 

  • Duarte CH, Prairie YT, Montes C, Cole JJ, Striegel R, Melack J, Downing JA (2008) CO2 emissions from saline lakes: a global estimate of a surprisingly large flux. J Geophys Res Biogeosci 113:G0404

    Article  CAS  Google Scholar 

  • Dyer PS (2002) Hydrophobins in the lichen symbiosis. New Phytol 154:1–4

    Article  Google Scholar 

  • Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458

    Article  PubMed  CAS  Google Scholar 

  • Dyhrman ST, Chappel PD, Halet ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Oawa T, Wolfgang R, Baume H, Kaplan A, Hagemann M (2006) The plant-like C2 glycolate pathway and the bacteria-like glycerate-pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142:333–342

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovitch M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glucolate metabolism and might have been conveyed endosymbiotically to plants. Proc Natl Acad Sci 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, 484 pp

    Google Scholar 

  • Finkel Z, Finkel ZV, Beardall J, Flynn KJ, Quigg A, Raven JA, Rees TAV (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:118–137

    Article  CAS  Google Scholar 

  • Fu FX, Warner ME, Zhan YH, Fen YY, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Fu FX, Mulholland MR, Garcia NS, Beck A, Bernhardt PW, Warner ME, Sañudo-Wilhelmy SA, Hutchins DA (2008) Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol Oceanogr 53:2472–2484

    Article  CAS  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, Raven JA (2010) Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J 27:491–519

    Article  CAS  Google Scholar 

  • Gao KS, Ai HX (2004) Relationship of growth and photosynthesis with colony size in an edible cyanobacterium, Ge-Xian-Mi, Nostoc (Cyanophyceae). J Phycol 40:523–526

    Article  Google Scholar 

  • Gao KS, Yu A (2000) Influence of CO2, light and watering on growth of Nostoc flagelliforme mats. J Appl Phycol 12:185–189

    Article  Google Scholar 

  • Gao K-S, Zou D (2001) Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae). J Phycol 37:768–771

    Article  CAS  Google Scholar 

  • Gattuso J-P, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2121–2133

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–151

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Norici A, Ratti S, Raven JA (2008) Role of sulphur for algae: acquisition, metabolism, ecology and evolution. In: Knaff DB, Leustek T (eds) Sulphur metabolism in phototrophic organisms. Springer, Dordrecht, pp 405–433, 516 pp

    Google Scholar 

  • Gomez-Baena G, Lopez-Lozana A, Gil-Martinez J, Mauel J, Diez J, Candau P, Garcia-Fernandez JM (2008) Glucose uptake and its effect on gene expression in Prochlorococcus. PLoS One 3:e3416

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary milestones or evolutionary dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383:423–425

    Article  CAS  Google Scholar 

  • Hammer A, Hodgson D-RW, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396:215–218

    Article  PubMed  CAS  Google Scholar 

  • Hansell DA, Kadko D, Bates NR (2004) Degradation of terrigenous organic matter in the Western Arctic Ocean. Science 304:858–861

    Article  PubMed  CAS  Google Scholar 

  • Hansen PJ, Lundholm N, Rost B (2007) Growth limitation in marine red-tide dinoflagellates: effect of pH versus inorganic carbon availability. Mar Ecol Prog Ser 334:63–71

    Article  CAS  Google Scholar 

  • Hecky RE, Kilham P (1973) Diatoms in alkaline, soda lakes: ecology and geochemical considerations. Limnol Oceanogr 18:53–71

    Article  CAS  Google Scholar 

  • Hellebust JA (1974) Extracellular products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 838–863, 989 pp

    Google Scholar 

  • Honegger R (1998) The lichen symbiosis – what is so spectacular about it? Lichenologist 30:193–212

    Google Scholar 

  • Horne AJ, Goldman CR (1994) Limnology, 2nd edn. McGraw-Hill, New York, 576 pp

    Google Scholar 

  • Hu HH, Zhou QB (2010) Regulation of inorganic carbon acquisition by nitrogen and phosphorus levels in the Nannochloropsis sp. World J Microbiol Biotechnol 26:957–961

    Article  CAS  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KL, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: consideration of experimental design. J Phycol 45:1236–1251

    Article  CAS  Google Scholar 

  • Hutchins DA, Fu FX, Zhan Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304

    Article  CAS  Google Scholar 

  • Illykchyan IN, Mckay RML, Zehr JP, Dyhrman JT, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324

    Article  CAS  Google Scholar 

  • Johnson DT, Wolf-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s Middle Age. Proc Natl Acad Sci USA 106:16925–16929

    Article  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity in soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kah LC, Riding R (2007) Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35:799–802

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–559

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular carbon pool in the blue-green alga Anabaena variabilis: response to external CO2 concentrations. Planta 149:219–226

    Article  CAS  Google Scholar 

  • Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol 25:177–210

    Article  PubMed  CAS  Google Scholar 

  • Kempe S, Kazmierczak J, Landam G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605–608

    Article  Google Scholar 

  • Kneip C, Lockhart P, Voβ C, Maier U-W (2007) Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evol Biol 7:55

    Article  PubMed  CAS  Google Scholar 

  • Kneip C, Voβ C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular alga Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    Article  PubMed  CAS  Google Scholar 

  • Kompantseva UI, Komova AV, Rusnov II, Pimenov NV, Sotokin DY (2009) Primary production of organic matter and phototrophic communities in the soda lakes of the Kolunda Steppe (Altai Krai). Mikrobiologiya 78:703–715

    Google Scholar 

  • Konishi Y, Prince J, Knott B (2001) The fauna of thrombolytic microbialites, Lake Clifton, Western Australia. Hydrobiologia 457:39–47

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Palaeoproterozoic snowball Earth: a climatic disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136

    Article  PubMed  CAS  Google Scholar 

  • Kosamu IBM, Obst M (2009) The influence of picocyanobacterial photosynthesis on calcite precipitation. Int J Environ Sci Technol 6:557–562

    CAS  Google Scholar 

  • Kranz SA, Sultemeyer D, Richter KU, Rost B (2009) Carbon acquisition by Trichodesmium: the effects of pCO2 and diurnal changes. Limnol Oceanogr 54:548–559

    Article  CAS  Google Scholar 

  • Kranz SA, Levitan O, Richter K-U, Prášil O, Berman-Frank O, Rost B (2010) Combined effects of CO2 and light on the N2 fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol 154:334–345

    Article  PubMed  CAS  Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Scheiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  CAS  Google Scholar 

  • Lee BD, Apel WA, Waton MR (2004) Screening of cyanobacterial species for calcification. Biotechnol Prog 20:1345–1351

    Article  PubMed  CAS  Google Scholar 

  • Lemloh M-L, Fremont J, Brümer F, Usher KM (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol 9:4. doi:10.1186/1472-6785-9-4

    Article  PubMed  CAS  Google Scholar 

  • Levitan O, Rosenberg G, Setlik I, Stelikova E, Grigel J, Klepetar PO, Berman-Frank I (2007) Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob Change Biol 13:531–538

    Article  Google Scholar 

  • Levitan O, Kranz SA, Spungin D, Prášil O, Rost B, Berman-Frank O (2010) Combined effects of CO2 and light on the N2 fixing cyanobacterium Trichodesmium IMS101: a mechanistic view. Plant Physiol 154:346–356

    Article  PubMed  CAS  Google Scholar 

  • Li YG, Gao KS (2004) Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. Eur J Phycol 39:9–15

    Article  Google Scholar 

  • Lieman-Hurwtiz J, Haimovitch M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A (2009) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low CO2-induced gene expression. Environ Microbiol 11:927–936

    Article  CAS  Google Scholar 

  • Lovelock JE, Whitfield M (1982) Life-span of the biosphere. Nature 296:561–563

    Article  CAS  Google Scholar 

  • Maberly SC (1983) The interdependence of photon irradiance and free carbon dioxide or bicarbonate concentration on the photosynthetic compensation points of freshwater plants. New Phytol 93:1–12

    Article  Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598

    Article  CAS  Google Scholar 

  • Maberly SC, Spence DHN (1983) Photosynthetic inorganic carbon use by freshwater plants. J Ecol 71:705–724

    Article  CAS  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061

    Article  CAS  Google Scholar 

  • MacKenzie TDB, Campbell DA (2005) Cyanobacterial acclimation to rapidly fluctuating light is constrained by inorganic carbon status. J Phycol 41:801–811

    Article  CAS  Google Scholar 

  • MacKenzie TDB, Burns RA, Campbell DA (2004) Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant Physiol 136:3301–3312

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie TDB, Johnson JM, Campbell DA (2005a) Dynamics of fluxes through photosynthetic complexes in response to changing light and inorganic carbon accumulation in Synechococcus elongantus. Photosynth Res 85:341–357

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie TDB, Johnson JM, Cockshutt AM, Burns RA, Campbell DA (2005b) Large reallocation of carbon, nitrogen and photosynthetic reductant among phycobilisomes, photosystems and Rubisco during light acclimation in Synecchococcus elongatus strain PCC7942 are constrained in cells under low environmental inorganic carbon. Arch Microbiol 183:192–202

    Article  CAS  Google Scholar 

  • Maguas C, Griffiths H, Broadmeadow H (1995) Gas-exchange and carbon-isotope discrimination in lichens – evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta 196:95–102

    Article  CAS  Google Scholar 

  • Martiny AC, Kathuris S, Berube PM (2009) Widespread metabolic potential for nitrite and nitrate assimilation among Prochloroccus genotypes. Proc Natl Acad Sci 106:10787–10792

    Article  PubMed  CAS  Google Scholar 

  • Mary I, Garkzarek L, Tarran GA, Koloirat C, Terry MJ, Scanlan DJ, Burkhill PH, Zubkov MV (2008) Diel periodicity in amino acid uptake by Prochlorococcus. Environ Microbiol 10:2124–2151

    Article  PubMed  CAS  Google Scholar 

  • Mcloughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology 6:95–105

    Article  PubMed  CAS  Google Scholar 

  • Melack JM (1979) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Smibi, Kenya). Limnol Oceanogr 24:753–760

    Article  Google Scholar 

  • Melack JM, Kilham P (1974) Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol Oceanogr 19:743–755

    Article  CAS  Google Scholar 

  • Meyer M, Seibt U, Griffiths H (2008) To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Philos Trans R Soc B 363:2767–2778

    Article  CAS  Google Scholar 

  • Mulholland MR, Glibert PM, Berg GM, van Heukelem L, Pantoja S, Lee C (1998) Extracellular amino acid oxidation by microplankton: a cross-ecosystem comparison. Aquat Microbiol Ecol 15:141–152

    Article  Google Scholar 

  • Mulkadjinian AY, Koonin EY, Makarova KS, Mekhedova KS, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadey D, Haslkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci 103:13126–13131

    Article  CAS  Google Scholar 

  • Obst M, Wewhrli B, Dittrich M (2009) CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 3:324–347

    Article  CAS  Google Scholar 

  • Oliveri E, Neri R, Bellanca A, Riding R (2010) Carbonate stromatolites from a Messinian hypersaline setting in the Caltanissetta Basin, Sicily: petrographic evidence of microbial activity and related stable isotope and rare earth element signatures. Sedimentology 57:142–161

    Article  CAS  Google Scholar 

  • Palinska KA, Laloui W, Bédu S, Loiseaux-de Goër S, Castets AM, Tippka R, Tandeau de Marsac N (2002) The signal transducer PII and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. Microbiology 148:2405–2412

    PubMed  CAS  Google Scholar 

  • Palmqvist K (1993) Photosynthetic CO2-use efficiency in lichens and their isolated photobionts: the possible role of a CO2-concentrating mechanism. Planta 191:48–56

    Article  CAS  Google Scholar 

  • Palmqvist K (2000) Carbon economy in lichens. New Phytol 148:11–36

    Article  CAS  Google Scholar 

  • Palmqvist K, Maguas C, Badger MR, Griffiths H (1994) Assimilation, accumulation and isotope discrimination of inorganic carbon in lichens: further evidence for the operation of a CO2 concentrating mechanism in cyanobacterial lichens. Cryptogam Bot 4:218–226

    Google Scholar 

  • Perry RS, Mcloughlin N, Lyme BY, Sephton MA, Oliver JD, Perry CC, Campbell K, Engel MH, Farmer JD, Barier MD, Staley JT (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sediment Geol 201:157–179

    Article  CAS  Google Scholar 

  • Poza-Carrión C, Fernández-Valiente E, Piňas FF, Leganés F (2001) Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. Strain UAM206 to combined fluctuating irradiance, pH, and inorganic carbon availability. J Plant Physiol 158:1455–1461

    Article  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, generic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  PubMed  CAS  Google Scholar 

  • Qiu BS, Gao KS (2001) Photosynthetic characteristics of the terrestrial blue-green alga, Nostoc flagelliforme. Eur J Phycol 36:147–156

    Article  Google Scholar 

  • Qiu BS, Gao K (2002a) Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated CO2 conditions. J Appl Phycol 14:77–83

    Article  Google Scholar 

  • Qiu BS, Gao K (2002b) Effect of CO2 enrichment on the bloom-forming cyanobacterial Microcystis aeruginosa (Cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. J Phycol 38:721–729

    Article  CAS  Google Scholar 

  • Rai AN, Söderböek E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (eds) (2002) Cyanobacteria in symbiosis. Springer, Dordrecht

    Google Scholar 

  • Ramos JBE, Biswas H, Schulz K, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob Biogeochem Cycles 21(2):GB2028

    Article  CAS  Google Scholar 

  • Ran L, Larrson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng W-W, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a vertically-transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5(7):e11486. doi:10.371/journal.pone/0011486

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Raun AL, Borum J, Sand-Jensen K (2009) Active accumulation of internal DIC pools reduces transport limitation in large colonies of Nostoc pruniforme. Aquat Biol 5:23–29

    Article  Google Scholar 

  • Raven JA (1984a) Energetics and transport in aquatic plants. Alan R Liss, New York, 587 pp

    Google Scholar 

  • Raven JA (1984b) A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol 98:593–625

    Article  CAS  Google Scholar 

  • Raven JA (1986) Evolution of plant life forms. In: Givnish T (ed) On the economy of plant form and function. Cambridge University Press, New York, pp 421–492, 717 pp

    Google Scholar 

  • Raven JA (1993) Energy and nutrient acquisition by autotrophic symbioses and their asymbiotic ancestors. Symbiosis 14:33–60

    Google Scholar 

  • Raven JA (1997) The role of marine biota in the evolution of terrestrial biota: gases and genes. Biogeochemistry 39:139–164

    Article  Google Scholar 

  • Raven JA (1999) The flagellate condition. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor and Francis, London, pp 27–48

    Google Scholar 

  • Raven JA (2002) Evolution of cyanobacterial symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 329–346, 355 pp

    Google Scholar 

  • Raven JA (2003) Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynth Res 77:155–171

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2006) Sensing inorganic carbon: CO2 and HCO −3 . Biochem J 396:e5–e7

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2009) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192

    Article  Google Scholar 

  • Raven JA, Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant Cell Environ 22:741–755

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M (2009) Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment. Geobiology 7:140–154

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Knoll AH (2010) Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584

    Article  CAS  Google Scholar 

  • Raven JA, Larkum AWD (2007) Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations. Photosynth Res 94:31–42

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Samuelsson G (1998) Ecophysiology of Fucus vesiculosus L. close to its northern limit in the Gulf of Bothnia. Bot Mar 31:399–410

    Google Scholar 

  • Raven JA, Johnston AM, Handley LL, McInroy SG (1990) Transport and assimilation of inorganic carbon by Lichina pygmaea under emersed and submersed conditions. New Phytol 114:407–417

    Article  CAS  Google Scholar 

  • Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80:1–25

    Article  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kűbler JE, Korb RE, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredricksen J, Dunton KH (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29(2–3):355–378

    Article  CAS  Google Scholar 

  • Raven JA, Brown K, Mackay M, Beardall J, Giordano M, Granum E, Leegood RC, Kilminster K, Walker DI (2005) Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity of the oceans. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Micro-organisms and earth systems: advances in geobiology, Society for general microbiology symposium 65. Cambridge University Press, Cambridge, pp 247–272

    Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008a) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond B 363:2641–2650

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J (2008b) Insights into the evolution of CCMs from comparison with other resource acquisition and assimilation processes. Physiol Plant 133:4–14

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Beardall J, Giordano M, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109(1–3):281–296

    Article  PubMed  CAS  Google Scholar 

  • Revsbeck NP, Jørgensen BB, Brix O (1981) Primary production of microalgae in sediments measured by oxygen microprofle, H14CO −3 fixation, and oxygen exchange methods. Limnol Oceanogr 26:717–730

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentration mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  CAS  Google Scholar 

  • Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: componenst of Precambrian stromatolites. Geol Croat 61:73–103

    Google Scholar 

  • Riding R (2009) An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago? Palaios 24:685–696

    Article  Google Scholar 

  • Rittenberg SC (1972) The obligate autotroph – the demise of a concept. Anthonie van Leeuwenhoek 38:457–478

    Article  CAS  Google Scholar 

  • Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean acidification: current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (1990) Model of carbon fixation in microbial mats from 3,500 Myr ago to the present. Nature 345:710–712

    Article  PubMed  CAS  Google Scholar 

  • Sand-Jensen K (2009) Fascinating adaptation of plants in Lobelia lakes. Sven Bot Tidskr 103:174–182

    Google Scholar 

  • Sand-Jensen J, Pedersen MF (1994) Photosynthesis by symbiotic algae in the freshwater sponge, Spongilla lacustris. Limnol Oceanogr 39:551–561

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Raun AL, Borum J (2009) Metabolism and resources of spherical colonies of Nostoc zetterstedtii. Limnol Oceanogr 54:1282–1291

    Article  CAS  Google Scholar 

  • Schreik S, Rückert C, Staiger D, Pistorius EK, Michel K-P (2007) Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics 8:437. doi:10.1186/1471.2164-8-437

    Article  Google Scholar 

  • Schulz KG, Barcelos e Ramos J, Zeebe RE, Riebesell U (2009) CO2 perturbation experiments: similarities and difference between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences 6:2145–2153

    Article  CAS  Google Scholar 

  • Scott KM, Henn-Sax M, Harmer TL, Longo DL, Frame CH, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characterization of the form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 52:2199–2204

    Article  CAS  Google Scholar 

  • Sherrat TN, Wilkinson DM (2009) Big questions in ecology and evolution. Oxford University Press, Oxford, 297 pp

    Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria. The stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Xu Y, Morel FMM (2009) Effects of pH/pCO2 control methods on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207

    Article  CAS  Google Scholar 

  • Smith EC, Griffiths H (1998) Intraspecific variations in the photosynthetic responses in cyanobacterial lichens from contrasting habitats. New Phytol 138:213–224

    Article  Google Scholar 

  • Sobek S, Algeston G, Bergstrom AK, Jansson M, Tranvick LJ (2005a) The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol 9:630–641

    Article  Google Scholar 

  • Sobek S, Tranvick LJ, Cole JJ (2005b) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycles 19:GB2003

    Article  CAS  Google Scholar 

  • Song YF, Qiu BS (2007) The CO2-concentrating mechanism in the bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) and effects of UVB radiation on its operation. J Phycol 43:957–964

    Article  CAS  Google Scholar 

  • Steinberg NA, Meeks JC (1989) Photosynthetic CO2 fixation and ribulose bisphosphate carboxylaase/oxygenase activity of Nostoc sp. Strain UCD 7801 in symbiotic association with Anthoceros punctatum. J Bacteriol 174:6227–6233

    Google Scholar 

  • Steinberg CEW, Schäfer H, Beisker W (1998) Do acid-tolerant cyanobacteria exist? Acta Hydrochim Hydrobiol 26:13–19

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Eweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DC-E, Schuster U, Metzl N, Yoshikawa-Inoue T, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TA, Tuilbrook B, Johannessen T, Olsen A, Bellerby R, Won CS, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res II Top Stud Oceanogr 56:554–577

    Article  CAS  Google Scholar 

  • Talling JF (1965) The photosynthetic activity of phytoplankton in East African lakes. Int Rev Gesamt Hydrobiol 50:1–32

    Article  Google Scholar 

  • Talling JF, Talling IB (1965) The chemical composition of African lakes and waters. Int Rev Gesamt Hydrobiol 50:421–463

    Article  Google Scholar 

  • Talling JF, Wood RB, Prosser MV, Baxter RM (1973) The upper limit of photosynthetic productivity of phytoplankton: evidence from Ethiopean soda lakes. Freshw Biol 3:53–76

    Article  Google Scholar 

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hertschel U (2007) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1:187–190

    Article  PubMed  Google Scholar 

  • Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimised. Proc Natl Acad Sci USA 103:7246–7251

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Sullivan SI, Price AL, Zimmerman SM (2005) Common freshwater algae grow in 100% CO2. Astrobiology 5:66–74

    Article  PubMed  CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversity of cyanobacteria: molecular-phylogenetic perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  PubMed  CAS  Google Scholar 

  • Tredici MR, Maiheri MC, Giovanetti L, de Philippis R, Vincenzini M (1988) Heterotrophic metabolism and diazotrophic growth of Nostoc sp. from Cycas circinalis. Plant Soil 110:199–206

    Article  CAS  Google Scholar 

  • Ungerer JL, Pratte BS, Thiel T (2008) Regulation of fructose transport and its effects on fructose toxicity in Anabaena spp. J Bacteriol 190:8115–8125

    Article  PubMed  CAS  Google Scholar 

  • Usher KM, Bergman B, Raven JA (2007) Exploring cyanobacterial mutualisms. Annu Rev Ecol Evol Syst 38:255–273

    Article  Google Scholar 

  • Vuorio K, Meili M, Sarvala J (2009) Natural isotope composition of carbon (δ13C) correlates with colony size in the planktonic cyanobacterium Gloeotrichia echinulata. Limnol Oceanogr 54:925–929

    Article  CAS  Google Scholar 

  • Wawrick B, Callagan AK, Bronck DA (2009) Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida Shelf as measured using stable isotope probing. Appl Environ Microbiol 75:6662–6670

    Article  CAS  Google Scholar 

  • Whitton BA, Al-Shehri AM, Ellwood NTW, Turner BJ (2005) Ecological aspccts of phosphatise activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 pp

    Chapter  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of autotrophy and methanotrophy? FEMS Microbiol Lett 28:335–352

    Article  CAS  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2005) Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the inorganic carbon pool and involves oxygen. Plant Physiol 139:698–710

    Article  CAS  Google Scholar 

  • Wouters J, Raven JA, Minnhagen S, Graneli E, Janson S (2009) The luggage hypothesis: comparison of two phototrophic hosts with nitrogen-fixing cyanobacteria and implications on analogous life histories for kleptoplastids/secondary symbiosis in dinoflagellates. Symbiosis 49:61–70

    Article  Google Scholar 

  • Xu Z, Gao KS (2009) Impacts of UV radiation on growth and photosynthetic carbon assimilation in Gracilaria lemanaeiformis (Rhodophyta) under phosphorus-limited and replete conditions. Funct Plant Biol 36:1057–1064

    Article  CAS  Google Scholar 

  • Xu T, Song L-R (2007) Studies on the utility of inorganic carbon in three strains of Microcystis aeruginosa. Acta Hydrol Sin 31:245–250

    CAS  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics. Isotopes, Elsevier, 346 pp

    Google Scholar 

  • Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    Article  PubMed  CAS  Google Scholar 

  • Zhang C-C, Jeanjean R, Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol Lett 161:285–292

    Article  PubMed  CAS  Google Scholar 

  • Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plankton Res 31:933–938

    Article  CAS  Google Scholar 

  • Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise of atmospheric oxygen. Geobiol 8:1–23

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507

    Article  CAS  Google Scholar 

  • Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S (2012) Isolation and characterisation of the Prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol 194:787–795

    Article  CAS  Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiol 3:145–165

    Article  CAS  Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author’s work on carbon metabolism in algae has been supported by the Natural Environmental Research Council UK. The author thanks John Beardall, Charles Cockell, Kate Crawfurd, Paul Falkowski, Kevin Flynn, Mario Giordano, Espen Granum, Ian Joint, Richard Leegood and Karen Roberts for helpful discussion, and Brian Whitton for being a helpful and supportive editor. The University of Dundee is a Scottish registered charity, No: SC015096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Raven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raven, J.A. (2012). Carbon. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_17

Download citation

Publish with us

Policies and ethics