Skip to main content
Log in

The obligate autotroph — the demise of a concept

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Autotrophy is a life style in which inorganic compounds provide for all nutritional needs of an organism. Implicit in this definition is the capacity of an organism to derive all cell carbon from CO2 and to obtain ATP either photosynthetically or chemolithotrophically. The existence of bacteria with such potentials has been known since the work of Winogradsky in the 1880's. The question explored in this paper is whether bacteria exist that must of necessity live autotrophically, i.e., the obligate autotrophsensu Winogradsky.

The evidence is briefly reviewed and leads to four conclusions. One: there is no obligatory coupling between phototrophy and autotrophy or between chemolithotrophy and autotrophy. Two: autotrophic bacteria are not uniquely inhibited by organic matter. Three: all putative obligate autotrophic bacteria so far tested assimilate and metabolize exogenously supplied organic compounds. Four: mixotrophy can exist with respect to autotrophic and heterotrophic biosynthetic mechanisms and/or to chemolithotrophic and chemoorganotrophic energy-generating processes.

Examples remain of bacteria that have not been cultured in the absence of an inorganic energy source or light. Such forms are appropriately described as obligate chemolithotrophs or obligate phototrophs. The available evidence, briefly categorized above, suggest that none of these bacteria is, at the same time, an obligate autotroph. From ecological and evolutionary considerations, an absolute dependence on carbon dioxide for all carbon makes little sense, and bacteria with such a requirement would be an anachronism on earth as it now exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauchop, T. andElsden, S. R. 1960. The growth of micro-organisms in relation to their energy supply. - J. Gen. Microbiol.23:457–469.

    CAS  PubMed  Google Scholar 

  • Brock, T. D., Brock, M. L., Bott, T. L. andEdwards, M. R. 1971. Microbial life at 90 C: the sulfur bacteria of Boulder Spring. - J. Bacteriol.107:303–314.

    CAS  PubMed  Google Scholar 

  • Butler, R. G. andUmbreit, W. W. 1966. Absorption and utilization of organic matter by the strict autotroph,Thiobacillus thiooxidans, with special reference to aspartic acid. - J. Bacteriol.91:661–666.

    CAS  PubMed  Google Scholar 

  • Clark, C. andSchmidt, E. L. 1967. Growth response ofNitrosomonas europaea to amino acids. - J. Bacteriol.93:1302–1308.

    CAS  PubMed  Google Scholar 

  • Eberhardt, U. 1966. über das Wasserstoff aktivierende System vonHydrogenomonas H 16. II. Abnahme der AktivitÄt bei heterotrophem Wachstum. - Arch. Mikrobiol.54:115–124.

    Article  CAS  Google Scholar 

  • Foster, J. W. 1940. The rÔle of organic substrates in photosynthesis of purple bacteria. - J. Gen. Physiol.24:123–134.

    Article  CAS  Google Scholar 

  • Gladstone, G. P. 1939. Interrelationships between amino acids in nutrition ofB. anthracis. - J. Exp. Pathol.20:189–200.

    CAS  Google Scholar 

  • Hempfling, W. P. andVishniac, W. 1967. Yield coefficients ofThiobacillus neapolitanus in continuous culture. - J. Bacteriol.93:874–878.

    CAS  PubMed  Google Scholar 

  • Hoare, D. S. andGibson, J. 1964. Photoassimilation of acetate and the biosynthesis of amino acids byChlorobium thiosulphatophilum. - Biochem. J.91:546–559.

    CAS  PubMed  Google Scholar 

  • Hoare, D. S., Hoare, S. L. andMoore, R. B. 1967. The photoassimilation of organic compounds by autotrophic blue-green algae. - J. Gen. Microbiol.49:351–370.

    CAS  Google Scholar 

  • Hurlbert, R. E. andLascelles, J. 1963. Ribulose diphosphate carboxylase in Thiorhodaceae. - J. Gen. Microbiol.33:445–458.

    CAS  PubMed  Google Scholar 

  • Johnson, C. L. andVishniac, W. 1970. Growth inhibition inThiobacillus neapolitanus by histidine, methionine, phenylalanine, and threonine. - J. Bacteriol.104:1145–1150.

    CAS  Google Scholar 

  • Kelly, D. P. 1967. The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus strain C. - Arch. Mikrobiol.58:99–116.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, D. P. 1971. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. - Ann. Rev. Microbiol.25:177–210.

    CAS  Google Scholar 

  • London, J. 1963.Thiobacillus intermedius nov. sp. a novel type of facultative autotroph. - Arch. Mikrobiol.46:329–337.

    Article  Google Scholar 

  • London, J. andRittenberg, S. C. 1966. Effects of organic matter on the growth ofThiobacillus intermedius. - J. Bacteriol.91:1062–1069.

    CAS  PubMed  Google Scholar 

  • London, J. andRittenberg, S. C. 1967.Thiobacillus perometabolis nov. sp., a non-autotrophicThiobacillus. - Arch. Mikrobiol.59:218–225.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M. C., Matin, A., andRittenberg, S. C. 1971. Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids. - Arch. Mikrobiol.79:354–366.

    Article  CAS  PubMed  Google Scholar 

  • MacKechnie, I. andDawes, E. A. 1969. An evaluation of the pathways of metabolism of glucose, gluconate and 2-oxogluconate byPseudomonas aeruginosa by measurement of molar growth yields. - J. Gen. Microbiol.55:341–349.

    CAS  PubMed  Google Scholar 

  • Mechalas, B. J. andRittenberg, S. C. 1960. Energy coupling inDesulfovibrio desulfuricans. - J. Bacteriol.80:501–507.

    CAS  PubMed  Google Scholar 

  • Pfeffer, W. 1897. Pflanzenphysiologie 1, 2. Aufl. - Verlag W. Engelmann, Leipzig.

    Google Scholar 

  • Postgate, J. 1960. On the autotrophy ofDesulphovibrio desulphuricans. - Z. Allg. Mikrobiol.1:53–56.

    Google Scholar 

  • Pringsheim, E. G. 1967. Die Mixotrophie vonBeggialoa. - Arch. Mikrobiol.59:247–254.

    Article  CAS  PubMed  Google Scholar 

  • Quayle, J. R. andKeech, D. B. 1959a. Carbon assimilation byPseudomonas oxalaticus (OX 1). 1. Formate and carbon dioxide utilization during growth on formate. - Biochem. J.72:623–630.

    CAS  PubMed  Google Scholar 

  • Quayle, J. R. andKeech, D. B. 1959b. Carbon assimilation byPseudomonas oxalalicus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. - Biochem. J.72:631–637.

    CAS  PubMed  Google Scholar 

  • Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. - Advances Microb. Phys.3:159–196.

    CAS  Google Scholar 

  • Rittenberg, S. C. andGoodman, N. S. 1969. Mixotrophic growth ofHydrogenomonas eutropha. - J. Bacteriol.98:617–622.

    CAS  PubMed  Google Scholar 

  • Schloesing, T. etMuntz, A. 1877. Sur la nitrification par les ferments organisés. - C. R Acad. Sci.84:301–303.

    Google Scholar 

  • Smith, A. J., London, J. andStanier, R. Y. 1967. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. - J. Bacteriol.94:972–983.

    CAS  PubMed  Google Scholar 

  • Smith, A. J. andHoare, D. S. 1968. Acetate assimilation byNitrobacter agilis in relation to its “obligate autotrophy.” - J. Bacteriol.95:844–855.

    CAS  PubMed  Google Scholar 

  • Stanier, R. Y., Doudoroff, M., Kunisawa, R. andContopoulou, R. 1959. The role of organic substrates in bacterial photosynthesis. - Proc. Natl. Acad. Sci. U.S.45:1246–1260.

    CAS  Google Scholar 

  • Still, G. G. 1965. The role of some of the Krebs cycle reactions in the biosynthetic functions ofThiobacillus thioparus.- Ph. D. Thesis, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Umbarger, H. E. 1969. Regulation of amino acid metabolism. - Ann. Rev. Biochem.38:323–370.

    CAS  PubMed  Google Scholar 

  • Umbarger, H. E. andBrown, B. 1958. Isoleucine and valine metabolism inE. coli. VIII. The formation of acetolactate. - J. Biol. Chem.233:1156–1160.

    CAS  PubMed  Google Scholar 

  • van Niel, C. B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. - Arch. Mikrobiol.3:1–112.

    Google Scholar 

  • van Niel, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. - Bacteriol. Rev.8:1–118.

    PubMed  Google Scholar 

  • Winogradsky, S. 1890. Recherches sur les organismes de la nitrification. - Ann. Inst. Pasteur4:213–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A lecture delivered before the third meeting of the Northwest European Microbiological Group, on August 18, 1971 at Utrecht, the Netherlands.

The work reported from the author's laboratory was supported by grants from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittenberg, S.C. The obligate autotroph — the demise of a concept. Antonie van Leeuwenhoek 38, 457–478 (1972). https://doi.org/10.1007/BF02328114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02328114

Keywords

Navigation