Skip to main content

Nitric Oxide Synthesis in the Chloroplast

  • Chapter
  • First Online:
The Biology of Subcellular Nitric Oxide

Abstract

Nitric oxide production in plant cells was first described under specific stress conditions and NO emission was long considered as a non-physiological response to stressors (Plant Physiol 68:1488–1493, 1981; Plant Physiol 82:718–723, 1986; Vitam Horm 72:339–398, 2005). Constitutive NO synthesis, however, has been detected in a variety of plant species ranging from unicellular algae to vascular plants (Cormophyta) and several roles are currently attributed to NO in plant physiology (Chemosphere 39:1601–1610, 1999; Plant Cell Physiol 43:290–297, 2002; Vitam Horm 72:339–398, 2005; Folia Microbiol (Praha) 55:53–60, 2010; Cell Biol Int 34:301–308, 2010). Cellular events affected by NO occur at all major stages of plant life, such as germination (Planta 210:215–221, 2000; Planta 219:847–855, 2004b; J Plant Physiol 166:213–218, 2009; Planta 232:999–1005, 2010), pollen tube orientation (Development 131:2707–2714, 2004), growth (Science 302:100–103, 2003; Plant J 43:849–860, 2005; Vitam Horm 72:339–398, 2005), symbiotic plant-bacteria interactions (Plant Cell Physiol 46:99–107, 2005), flowering and senescence (Science 305:1968–1971, 2004; Trends Plant Sci 10:195–200, 2005; Plant Cell 17:3436–3450, 2005). Wound healing (Vitam Horm 72:339–398, 2005), stress response (J Integr Plant Biol 50:231–243, 2008; J Plant Physiol 166:1336–1341, 2009), defense against pathogens (Proc Natl Acad Sci USA 101:15811–15816, 2004; Biodegradation 22:661–671, 2010) and heavy metal tolerance (Proc Natl Acad Sci USA 101:15811–15816, 2004; Planta 232:325–335, 2010; Plant Physiol 154:1319–1334, 2010) are also linked to NO biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  PubMed  CAS  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupianez JA, del Rio LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Berkels R, Purol-Schnabel S, Roesen R (2004) Measurement of nitric oxide by conversion of nitrate/nitrite to NO. Methods Mole Biol 279:8

    Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004a) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004b) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Song L, Rao B, Zhu T, Zhang YT (2010) Nitric oxide plays a role as second messenger in the ultraviolet-B irradiated green alga Chlorella pyrenoidosa. Folia Microbiol (Praha) 55:53–60

    Google Scholar 

  • Chen S, Dickman MB (2004) Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J Exp Bot 55:2617–2623

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411:290–309

    Article  PubMed  CAS  Google Scholar 

  • Cortez S, Teixeira P, Oliveira R, Mota M (2010) Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor. Biodegradation 22:661–671

    Article  PubMed  Google Scholar 

  • Crane BR, Sudhamsu J, Patel BA (2010) Bacterial nitric oxide synthases. Annu Rev Biochem 79:445–470

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  PubMed  CAS  Google Scholar 

  • Dalling MJ, Tolbert NE, Hageman RH (1972) Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim Biophys Acta 283:505–512

    CAS  Google Scholar 

  • Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol 82:718–723

    Article  PubMed  CAS  Google Scholar 

  • Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Mery S, Meyer C, Hodges M (2008) Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett 582:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Debska K, Andryka P, Bogatek R (2010) The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta 232:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Yang L (1966) Structure of the red fluorescence band in chloroplasts. J Gen Physiol 49:763–780

    Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ (2011) Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling. Sci Signal 4:jc1

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2010) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  Google Scholar 

  • Hachez C, Chaumont F (2010) Aquaporins: a family of highly regulated multifunctional channels. Adv Exp Med Biol 679:1–17

    Article  PubMed  CAS  Google Scholar 

  • Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hodge AJ, McLean JD, Mercer FV (1955) Ultrastructure of the lamellae and grana in the chloroplasts of Zea mays L. J Biophys Biochem Cytol 1:605–614

    Article  PubMed  CAS  Google Scholar 

  • Hodge AJ, McLean JD, Mercer FV (1956) A possible mechanism for the morphogenesis of lamellar systems in plant cells. J Biophys Biochem Cytol 2:597–608

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WG, Hüne PA (2009) Energy conservation in photosynthesis. In: Introduction to plant physiology. Wiley, London

    Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404

    Article  PubMed  CAS  Google Scholar 

  • Isner JC, Maathuis FJ (2011) Measurement of cellular cGMP in plant cells and tissues using the endogenous fluorescent reporter FlincG. Plant J 65:329–334

    Article  PubMed  CAS  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    CAS  Google Scholar 

  • Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY (2011) NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62:3875–3884

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Kanahama K, Kanayama Y (2010) Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. J Plant Physiol 167:238–241

    Article  PubMed  CAS  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165:967–975

    Article  PubMed  CAS  Google Scholar 

  • Krueger R, Kliewer M (1995) Arginine synthesis in grapevine leaves and berries: diurnal and seasonal patterns, environmental and physiological influences. Am J Enol Vitic 46:6

    Google Scholar 

  • Li H, Culligan K, Dixon RA, Chory J (1995) CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7:1599–1610

    PubMed  CAS  Google Scholar 

  • Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954

    Article  PubMed  CAS  Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiol Plant 140:89–102

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ruiz A, Verbelen JP, Roldan JM, Diez J (1985) Nitrate reductase of green algae is located in the pyrenoid. Plant Physiol 79:1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Lum HK, Lee CH, Butt YK, Lo SC (2005) Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). Nitric Oxide 12:220–230

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Xu W, Xu H, Chen Y, He Z, Ma M (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 232:325–335

    Article  PubMed  CAS  Google Scholar 

  • Mallick N, Rai LC, Mohn FH, Soeder CJ (1999) Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Chemosphere 39:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Marechal A, Mattioli TA, Stuehr DJ, Santolini J (2010) NO synthase isoforms specifically modify peroxynitrite reactivity. FEBS J 277:3963–3973

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Google Scholar 

  • Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140:103–110

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 30:521–528

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L (2004a) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J Plant Physiol 161:777–783

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004b) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  CAS  Google Scholar 

  • Otvos K, Pasternak TP, Miskolczi P, Domoki M, Dorjgotov D, Szucs A, Bottka S, Dudits D, Feher A (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J 43:849–860

    Article  PubMed  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed Cell Death in Plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    Article  PubMed  CAS  Google Scholar 

  • Prado CM, Leick-Maldonado EA, Yano L, Leme AS, Capelozzi VL, Martins MA, Tiberio IF (2006) Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol 35:457–465

    Article  PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, Van Der Giezen M, Rogers MB, Allen JF (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105:10061–10066

    Article  PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Ibrahim IM, Jelicic B, Tomasic A, Fulgosi H, Allen JF (2010) Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol 2:888–896

    Article  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  PubMed  CAS  Google Scholar 

  • Ritenour GL, Joy KW, Bunning J, Hageman RH (1967) Intracellular localization of nitrate reductase, nitrite reductase, and glutamic Acid dehydrogenase in green leaf tissue. Plant Physiol 42:233–237

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Romera FJ, Garcia MJ, Alcantara E, Perez-Vicente R (2011) Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. Plant Signal Behav 6:167–170

    Article  PubMed  CAS  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2010) Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 49:124–130

    Article  PubMed  Google Scholar 

  • Ruhlman T, Daniell H (2007) Plastid pathways. In: Verpoorte et al (eds) Application of plant metabolic engineering. Springer, Dordrecht, pp 79–108 (21)

    Google Scholar 

  • Sai J, Johnson CH (2002) Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  PubMed  CAS  Google Scholar 

  • Samuilov VD, Lagunova EM, Gostimsky SA, Timofeev KN, Gusev MV (2003) Role of chloroplast photosystems II and I in apoptosis of pea guard cells. Biochemistry (Mosc) 68:912–917

    Article  CAS  Google Scholar 

  • Samuilov VD, Kiselevsky DB, Shestak AA, Nesov AV, Vasil’ev LA (2008) Reactive oxygen species in programmed death of pea guard cells. Biochemistry (Mosc) 73:1076–1084

    Article  CAS  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50:231–243

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  PubMed  CAS  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    Article  PubMed  CAS  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  CAS  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge UI, Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11:1609–1622

    PubMed  CAS  Google Scholar 

  • Sudhamsu J, Crane BR (2009) Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 17:212–218

    Google Scholar 

  • Sun LR, Hao FS, Lu BS, Ma LY (2010) AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5:1022–1024

    Article  PubMed  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    Article  PubMed  CAS  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Holk A, Scherer GF (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    Article  PubMed  CAS  Google Scholar 

  • van Rensen JJ (2002) Role of bicarbonate at the acceptor side of Photosystem II. Photosynth Res 73:185–192

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Li S, Sheng H, Feng H, Xu S, An L (2007) Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 55:294–301

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yordanova ZP, Iakimova ET, Cristescu SM, Harren FJ, Kapchina-Toteva VM, Woltering EJ (2010) Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol Int 34:301–308

    Article  PubMed  CAS  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2010) Nitric oxide mediates Brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192

    Article  PubMed  Google Scholar 

  • Zhao MG, Liu RJ, Chen L, Tian QY, Zhang WH (2009) Glucose-induced inhibition of seed germination in Lotus japonicus is alleviated by nitric oxide and spermine. J Plant Physiol 166:213–218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rőszer, T. (2012). Nitric Oxide Synthesis in the Chloroplast. In: The Biology of Subcellular Nitric Oxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2819-6_3

Download citation

Publish with us

Policies and ethics