Skip to main content

Zooxanthellae: The Yellow Symbionts Inside Animals

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Corals are associated with photosymbiotic unicellular algae and cyanobacteria. The unicellular algae are usually called zooxanthellae due to their yellow-brown color. The zooxanthellae are mainly classified as dinoflagellates to the genus Symbiodinium sp. The advantage of symbiosis is based on adaptations of transport and the exchange of nutritional resources, which allow it to be spread all over the tropical and some temperate oceans. Their existence over millions of years depends on the ability of the zooxanthellae, the host, and the holobiont as a whole unit to change, acclimate, and adapt in order to survive under developmental and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond Ser B-Biol Sci 275:2273–2282

    Article  CAS  Google Scholar 

  • Agostinim S, Suzuki Y, Casareto B, Nakano Y, Hidaka M, Badrun N (2009) Coral symbiotic complex: hypothesis through vitamin B12 for a new evaluation. Galaxea J Coral Reef Stud 11:1–11

    Article  Google Scholar 

  • Allemand D, Furla P, Benazet-Tambutte S (1998) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Botany-Revue Canadienne de Botanique 76:925–941. In: 3rd international symposium on inorganic carbon acquisition by aquatic photosynthetic organisms Vancawer, British Columbia, 1997

    Google Scholar 

  • Anderson SL, Burris JE (1987) Role of glutamine-synthetase in ammonia assimilation by symbiotic marine dinoflagellates (zooxanthellae). Mar Biol 94:451–458

    Article  CAS  Google Scholar 

  • Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429

    Article  Google Scholar 

  • Baghdasarian G, Muscatine L (2000) Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. Biol Bull 199:278–286

    Article  CAS  Google Scholar 

  • Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  Google Scholar 

  • Baker AC (2001) Ecosystems - Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242

    Article  Google Scholar 

  • Baker AC, Starger CJ, Mcclanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Banaszak AT, Trench RK (1995) Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses: I. Response of the algal symbionts in culture and in hospite. J Exp Mar Biol Ecol 194:213–232

    Article  Google Scholar 

  • Banaszak AT, Santos MG, LaJeunesse TC, Lesser MP (2006) The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Biol Ecol 337: 131–146

    Article  CAS  Google Scholar 

  • Barneah O, Brickner I, Hooge M, Weis VM, Benayahu Y (2007a) First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Waminoa brickneri (Acoelomorpha). Invertebr Biol 126:113–119

    Article  Google Scholar 

  • Barneah O, Brickner I, Hooge M, Weis VM, LaJeunesse TC, Benayahu Y (2007b) Three party symbiosis: acoelomorph worms, corals and unicellular algal symbionts in Eilat (Red Sea). Mar Biol 151:1215–1223

    Article  Google Scholar 

  • Belda-Baillie CA, Baillie BK, Maruyama T (2002) Specificity of a model cnidarian-dinoflagellate symbiosis. Biol Bull 202:74–85

    Article  CAS  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond Ser B-Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197

    Google Scholar 

  • Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A Mol Integr Physiol 137:547–555

    Article  CAS  Google Scholar 

  • Biel KY, Gates RD, Muscatine L (2007) Effects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoflagellates. Russ J Plant Physiol 54:171–183

    Article  CAS  Google Scholar 

  • Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49:641–652

    Article  CAS  Google Scholar 

  • Brandt K (1883) Über die morphologische und physiologische bedeutung des chlorophylls bei. Tieren Mitt Zool Sta Neapol 4:191–302

    Google Scholar 

  • Brown B, Cossins A (2011) The potential for temperature acclimatisation of reef corals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition, Springer, Dordrecht

    Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb S (2002) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. J Exp Mar Biol Ecol 277:129–144

    Article  CAS  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism – a testable hypothesis. Bioscience 43:320–326

    Article  Google Scholar 

  • Carlon DB, Lippe C (2008) Fifteen new microsatellite markers for the reef coral Favia fragum and a new Symbiodinium microsatellite. Mol Ecol Resour 8:870–873

    Article  CAS  Google Scholar 

  • Chen MC, Hong MC, Huang YS, Liu MC, Cheng YM, Fang LS (2005) ApRab11, a cnidarian homologue of the recycling regulatory protein Rab11, is involved in the establishment and maintenance of the Aiptasia-Symbiodinium endosymbiosis. Biochem Biophys Res Commun 338:1607–1616

    Article  CAS  Google Scholar 

  • Clode PL, Saunders M, Maker G, Ludwig M, Atkins CA (2009) Uric acid deposits in symbiotic marine algae. Plant Cell Environ 32:170–177

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16: 985–987

    Article  CAS  Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16:851–863

    Article  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davies PS (1991) Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol 108:137–144

    Article  Google Scholar 

  • Dimond J, Carrington E (2008) Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion. Coral Reefs 27:601–604

    Article  Google Scholar 

  • Douglas AE (2008) Conflict, cheats and the persistence of symbioses. New Phytol 177:849–858

    Article  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116

    Article  Google Scholar 

  • Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31:1523–1533

    Article  CAS  Google Scholar 

  • Drew EA (1972) The biology and physiology of alga-invertebrate symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75

    Article  Google Scholar 

  • Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Dubinsky Z, Falkowski P (2011) Light as a source of information and energy in zooxanthellate corals. In: Dubinsky Z and Stambler N (eds) Coral reefs: an ecosystem in transition, Springer, Dordrecht

    Google Scholar 

  • Dubinsky Z, Matsukawa R, Karube I (1995) Photobiological aspects of algal mass culture. J Mar Biotech 2:61–65

    Google Scholar 

  • Dubinsky Z, Stambler N, Benzion M, McCloskey LR, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical-properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond Ser B-Biol Sci 239:231–246

    Article  Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  CAS  Google Scholar 

  • Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM (2006) Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol 63:95–107

    Article  CAS  Google Scholar 

  • Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc Lond Ser B-Biol Sci 274:3079–3085

    Article  Google Scholar 

  • Dustan P (1975) Growth and form in reef-building coral Montastrea-annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283:843–845

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora-pistillata, a hermatypic coral from the gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Falkowski PG, Jokiel P, Kinzie RI (1990) Irradiance and corals. In: Dubinsky Z (ed) Coral reefs. Ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 89–107

    Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population-control in symbiotic corals. Bioscience 43:606–611

    Article  Google Scholar 

  • Fang LS, Chen YWJ, Chen CS (1989) Why does the white tip of stony coral grow so fast without zooxanthellae. Mar Biol 103:359–363

    Article  Google Scholar 

  • Fitt W, Trench R (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic. New Phytol 94: 421–432

    Article  Google Scholar 

  • Fitt WK, Chang SS, Trench RK (1981) Motility pattern of different strains of the symbiotic dinoflagellate Symbiodinium ( = Gymnodinium) microadriaticum Freudenthal in culture. Bull Mar Sci 31:436–443

    Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Frade PR, Englebert N, Faria J, Visser PM, Bak RPM (2008a) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913–925

    Article  Google Scholar 

  • Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008b) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703

    Article  CAS  Google Scholar 

  • Frade PR, Bongaerts P, Winkelhagen AJS, Tonk L, Bak RPM (2008c) In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr 53:2711–2723

    Article  Google Scholar 

  • Franklin DJ, Hoegh-Guldberg P, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130

    Article  Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella, taxonomy, life cycle, and morphology. J Protozool 9:45–52

    Google Scholar 

  • Furla P, Allemand D, Shick JM, Ferrier-Pages C, Richier S (2005) The symbiotic anthozoan: a physiological chimera between alga and animal. Integr Comp Biol 45:595–604

    Article  CAS  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host-cell detachment in symbiotic cnidarians – implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Gates RD, Hoeghguldberg O, McFallngai MJ, Bil KY, Muscatine L (1995) Free amino-acids exhibit anthozoan host factor activity – they induce the release of photosynthate from symbiotic dinoflagellates in-vitro. Proc Natl Acad Sci U S A 92:7430–7434

    Article  CAS  Google Scholar 

  • Genkai-Kato M, Yamamura N (1999) Evolution of mutualistic symbiosis without vertical transmission. Theor Popul Biol 55:309–323

    Article  CAS  Google Scholar 

  • Gladfelter EH, Michel G, Sanfelici A (1989) Metabolic gradients along a branch of the reef coral Acropora-palmata. Bull Mar Sci 44:1166–1173

    Google Scholar 

  • Goiran C, Allemand D, Galgani I (1997) Transient Na+ stress in symbiotic dinoflagellates after isolation from coral-host cells and subsequent immersion in seawater. Mar Biol 129:581–589

    Article  CAS  Google Scholar 

  • Goiran C, AlMoghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association.1. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199: 207–225

    Article  CAS  Google Scholar 

  • Gou WL, Sun J, Li XQ, Zhen Y, Xin ZY, Yu ZG, Li RX (2003) Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaozhou Bay, PR China. J Exp Mar Biol Ecol 296:135–144

    Article  CAS  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248

    Article  Google Scholar 

  • Grant AJ, Remond M, Withers KJT, Hinde R (2001) Inhibition of algal photosynthesis by a symbiotic coral. Hydrobiologia 461:63–69

    Article  Google Scholar 

  • Grant AJ, Trautman DA, Frankland S, Hinde R (2003) A symbiosome membrane is not required for the actions of two host signalling compounds regulating photosynthesis in symbiotic algae isolated from cnidarians. Comp Biochem Physiol A Mol Integr Physiol 135: 337–345

    CAS  Google Scholar 

  • Grant AJ, Starke-Peterkovic T, Withers KJT, Hinde R (2004) Aposymbiotic Plesiastrea versipora continues to produce cell-signalling molecules that regulate the carbon metabolism of symbiotic algae. Comp Biochem Physiol A Mol Integr Physiol 138:253–259

    Article  CAS  Google Scholar 

  • Grant AJ, Remond M, Starke-Peterkovic T, Hinde R (2006) A cell signal from the coral Plesiastrea versipora reduces starch synthesis in its symbiotic alga, Symbiodinium sp. Comp Biochem Physiol A Mol Integr Physiol 144:458–463

    Article  CAS  Google Scholar 

  • Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals – computer-simulation. Science 193:895–897

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2003) Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–2274

    Article  CAS  Google Scholar 

  • Hennige SJ, Smith DJ, Perkins R, Consalvey M, Paterson DM, Suggett DJ (2008) Photoacclimation, growth and distribution of massive coral species in clear and turbid waters. Mar Ecol Prog Ser 369:77–88

    Article  Google Scholar 

  • Hennige S, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Hill R, Schreiber U, Gademann R, Larkum AWD, Kuhl M, Ralph PJ (2004) Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar Biol 144:633–640

    Article  Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z and Stambler N (eds) Coral reefs: an ecosystem in transition, Springer, Dordrecht

    Google Scholar 

  • Hoegh-Guldberg O, McCloskey LR, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the red-sea. Coral Reefs 5:201–204

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  • Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc 84:1–17

    Article  Google Scholar 

  • Houlbreque F, Tambutte E, Allemand D, Ferrier-Pages C (2004) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  Google Scholar 

  • Huang HJ, Wang LH, Chen WNU, Fang LS, Chen CS (2008) Developmentally regulated localization of endosymbiotic dinoflagellates in different tissue layers of coral larvae. Coral Reefs 27:365–372

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond Ser B-Biol Sci 271:1757–1763

    Article  CAS  Google Scholar 

  • Jackson AE, Miller DJ, Yellowlees D (1989) Phosphorus-metabolism in the coral zooxanthellae symbiosis – characterization and possible roles of 2 acid-phosphatases in the algal symbiont Symbiodinium sp. Proc R Soc Lond Ser B-Biol Sci 238:193–202

    Article  CAS  Google Scholar 

  • Jackson AE, Yellowlees D (1990) Phosphate-uptake by zooxanthellae isolated from corals. Proc R Soc Lond Ser B-Biol Sci 242:201–204

    Article  Google Scholar 

  • Jones RJ, Yellowlees D (1997) Regulation and control of intracellular algae (equals zooxanthellae) in hard corals. Philos Trans R Soc Lond B 352:457–468

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community shift in the symbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond Ser B-Biol Sci 275:1359–1365

    Article  CAS  Google Scholar 

  • Kaniewska P, Anthony KRN, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155:649–660

    Article  Google Scholar 

  • Karako S, Stambler N, Dubinsky Z, Seckbach J (2002) The taxonomy and evolution of the zooxanthellae-coral symbiosis. In: Symbiosis: mechanisms and model systems. Kluwer Academic Press, Dordrecht, pp 541–557

    Google Scholar 

  • Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2004) Do clades of symbiotic dinoflagellates in scleractinian corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs? J Exp Mar Biol Ecol 311:301–314

    Article  Google Scholar 

  • Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2005) Physiology changes of Symbiodinium microadriaticum clade B as response to different environmental conditions. J Exp Mar Biol Ecol 318:11–20

    Article  CAS  Google Scholar 

  • Kazandjian A, Shepherd VA, Rodriguez-Lanetty M, Nordemeier W, Larkum AWD, Quinnell RG (2008) Isolation of symbiosomes and the symbiosome membrane complex from the zoanthid Zoanthus robustus. Phycologia 47:294–306

    Article  Google Scholar 

  • Kinzie RA, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  Google Scholar 

  • Kleppel GS, Dodge RE, Reese CJ (1989) Changes in pigmentation associated with the bleaching of stony corals. Limnol Oceanogr 34:1331–1335

    Article  CAS  Google Scholar 

  • Kuhl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the miocene-pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004b) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Google Scholar 

  • LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727

    Article  Google Scholar 

  • Lampert-Karako S, Stambler N, Katcoff DJ, Achituv Y, Dubinsky Z, Simon-Blecher N (2008) Effects of depth and eutrophication on the zooxanthellae clades of Stylophora pistillata from the Gulf of Eilat (Red Sea). Aquat Conserv Mar Freshwater Ecosyst 18: 1039–1045

    Article  Google Scholar 

  • Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    Article  CAS  Google Scholar 

  • Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J Phycol 43:1010–1021

    Article  CAS  Google Scholar 

  • Lerch AK, Cook CB (1984) Some effects of photoperiod on the motility rhythm of cultured zooxanthellae. Bull Mar Sci 34:477–483

    Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral-reef anthozoans – effects of irradiance, ultraviolet-radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Lesser M (2011) Coral bleaching: causes and mechanisms. Dubinsky Z and Stambler N (eds) Coral reefs: an ecosystem in transition, Springer, Dordrecht

    Google Scholar 

  • Levy O, Dubinsky Z, Schneider K, Achituv Y, Zakai D, Gorbunov MY (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117

    Article  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Dubinsky Z, Stambler N (2006) Diel ‘tuning’ of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283

    Article  CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • Loeblich AR, Sherley JL (1979) Observations on the theca of the motile phase of free-living and symbiotic isolates of Zooxanthella-microadriatica (Freudenthal) comb nov. J Mar Bio Assoc UK 59:195–205

    Article  Google Scholar 

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    Article  CAS  Google Scholar 

  • Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol A Mol Integr Physiol 147:1–10

    Article  CAS  Google Scholar 

  • Mieog J, van Oppen MJH, Cantin N, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Muller-Parker G (1984) Dispersal of zooxanthellae on coral reefs by predators on cnidarians. Biol Bull 167:159–167

    Article  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light and shade adapted colonies of the symbiotic coral Stylophora pistillasta. Proc R Soc Lond Ser B-Biol Sci 222:181–202

    Article  CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algal in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Dordrecht, pp 75–87

    Google Scholar 

  • Muscatine L, Ferrier-Pages C, Blackburn A, Gates RD, Baghdasarian G, Allemand D (1998) Cell specific density of symbiotic dinoflagellates in tropical anthozoans. Coral Reefs 17:329–337

    Article  Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Pettay DT, Lajeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274

    Article  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann BJP (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  Google Scholar 

  • Rahav O, Dubinsky Z, Achituv Y, Falkowski PG (1989) Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata. Proc R Soc Lond Ser B-Biol Sci 236:325–337

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD, Kuhl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639–646

    Article  CAS  Google Scholar 

  • Ralph PJ, Schreiber U, Gademann R, Kuhl M, Larkum AWD (2005) Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. J Phycol 41:335–342

    Article  Google Scholar 

  • Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians (vol 105, pg 13674, 2008). Proc Natl Acad Sci U S A 105:17206–17206

    Article  Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle PL, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  Google Scholar 

  • Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198

    Article  CAS  Google Scholar 

  • Richier S, Cottalorda JM, Guillaume MMM, Fernandez C, Allemand D, Furla P (2008) Depth-dependant response to light of the reef building coral, Pocillopora verrucosa: implication of oxidative stress. J Exp Mar Biol Ecol 357:48–56

    CAS  Google Scholar 

  • Ritchie RJ, Eltringham K, Hinde R (1993) Glycerol uptake by zooxanthellae of the temperate hard coral, Plesiastrea-versipora (lamarck). Proc R Soc Lond Ser B-Biol Sci 253:189–195

    Article  CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2006) Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta 70:2781–2789

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138: 1175–1181

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc Natl Acad Sci U S A 92:2850–2853

    Article  CAS  Google Scholar 

  • Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8:539–553

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Sampayo EM, Dove S, LaJeunesse T (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  CAS  Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus symbiodinium freudenthal are haploid. Biol Bull 204:10–20

    Article  CAS  Google Scholar 

  • Santos SR, Shearer TL, Hannes AR, MA C (2004) Fine scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyta) of the Caribbean. Mol Ecol 13:459–469

    Article  CAS  Google Scholar 

  • Savage AM, Trapido-Rosenthal H, Douglas AE (2002) On the functional significance of molecular variation in Symbiodinium, the symbiotic algae of Cnidaria: photosynthetic response to irradiance. Mar Ecol Prog Ser 244:27–37

    Article  Google Scholar 

  • Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar Ecol Prog Ser 248:85–97

    Article  Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic-variation in Symbiodinium (=gymnodinium) microadriaticum freudenthal, and specificity in its symbiosis with marine-invertebrates.2. Morphological variation in Symbiodinium microadriaticum. Proc R Soc Lond Ser B-Biol Sci 207:429–444

    Article  Google Scholar 

  • Shick JM, Lesser MP, Dunlap WC, Stochaj WR, Chalker BE, Won JW (1995) Depth-dependent responses to solar ultraviolet-radiation and oxidative stress in the zooxanthellate coral Acropora-microphthalma. Mar Biol 122:41–51

    Article  CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Shick JM (2004) The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAS) in the coral Stylophora pistillata. Limnol Oceanogr 49:442–458

    Article  CAS  Google Scholar 

  • Smith GJ, Muscatine L (1999) Cell cycle of symbiotic dinoflagellates: variation in G(1) phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol 134:405–418

    Article  Google Scholar 

  • Stambler N (1998) Effects of light intensity and ammonium enrichment on the hermatypic coral Stylophora pistillata and its zooxanthellae. Symbiosis 24:127–145

    Google Scholar 

  • Stambler N, Dubinsky Z (2004) Stress effects on metabolism and photosynthesis of hermatypic corals. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 195–215

    Google Scholar 

  • Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reefs 24:1–9

    Article  Google Scholar 

  • Stambler N, Levy O, Vaki L (2008) Physiological response of hermatypic Red Sea corals at distribution depth of 5–75 m. Isr J Plant Sci 56:45–53

    Article  CAS  Google Scholar 

  • Stambler N (2010) Coral symbiosis under stress. In: Seckbach J, Grube M (eds) Symbioses and stress. In cellular origin, life in extreme habitats and astrobiology, Vol 17, Part 3. 197–224, DOI: 10.1007/978-90-481-9449-0_10, Springer, Dordrecht

  • Stambler N (2011) Marine microralgae/cyanobacteria-invertebrate symbiosis, trading energy for strategic material. In: Dubinsky Z, Seckbach J (eds) All flesh is grass: plant-animal interactions. Cellular Origin, life in extreme habitats and astrobiology, Vol 17, Springer, Dordrecht

    Google Scholar 

  • Stanley GD, Swart PK (1995) Evolution of the coral zooxanthellae symbiosis during the Ttriassic – a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stat M, Morris E, Gates RD (2008a) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 105:9256–9261

    Article  Google Scholar 

  • Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA (2008b) Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef. Coral Reefs 27:763–772

    Article  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ (2004a) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121

    Article  Google Scholar 

  • Strychar KB, Sammarco PW, Piva TJ (2004b) Apoptotic and necrotic stages of Symbiodinium (Dinophyceae) cell death activity: bleaching of soft and scleractinian corals. Phycologia 43:768–777

    Article  Google Scholar 

  • Strychar KB, Sammarco PW (2009) Exaptation in corals to high seawater temperatures: low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J Exp Mar Biol Ecol 369:31–42

    Article  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Article  CAS  Google Scholar 

  • Sutton DC, Hoeghguldberg O (1990) Host-zooxanthella interactions in 4 temperate marine invertebrate symbioses - assessment of effect of host extracts on symbionts. Biol Bull 178:175–186

    Article  Google Scholar 

  • Taguchi S, Kinzie RA (2001) Growth of zooxanthellae in culture with two nitrogen sources. Mar Biol 138:149–155

    Article  CAS  Google Scholar 

  • Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2006) Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. J Exp Mar Biol Ecol 336:110–119

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535

    Article  CAS  Google Scholar 

  • Thornhill DJ, Fitt WK, Schmidt GW (2006) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519

    Article  Google Scholar 

  • Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, vanWoesik R, Yamazato K (1996) Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser 139:167–178

    Article  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225

    Article  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M-faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373

    Article  CAS  Google Scholar 

  • Trautman DA, Hinde R, Cole L, Grant A, Quinnell R (2002) Visualisation of the symbiosome membrane surrounding Cnidarian algal cells. Symbiosis 32:133–145

    Google Scholar 

  • Trench RK (1971) Physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. 3. Effect of homogenates of host tissues on excretion f photosynthetic products in-vitro by zooxanthellae from two marine coelenterates. Proc R Soc Lond Ser B-Biol Sci 177:251–264

    Article  CAS  Google Scholar 

  • Trench RK (1987) Dinoflagellate in non-parasitic symbiosis. In: F.J.R. T (ed) The biology of dinoflagellate botanical monographs, vol 21, Blackwell Scientific, Oxford, pp 531–570

    Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses – a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Trench RK (1997) Diversity of symbiotic dinoflagellate and the evolution of microalgal-invertebrate symbioses. Proc 8th Intl Coral Reef Symp 2:1275–1286

    Google Scholar 

  • Ulstrup KE, Van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  Google Scholar 

  • Ulstrup KE, van Oppen MJH, Kuhl M, Ralph PJ (2007) Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM-T, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond Ser B-Biol Sci 268:1759–1767

    Article  Google Scholar 

  • van Oppen MJH (2004) Mode of zooxanthellae transmission does not affect zooxanthellae diversity in acroporid corals. Mar Biol 144:1–7

    Article  Google Scholar 

  • Venn AA, Wilson MA, Trapido-Rosenthal HG, Keely BJ, Douglas AE (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ 29:2133–2142

    Article  CAS  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    Article  CAS  Google Scholar 

  • Wakefield TS, Farmer MA, Kempf SC (2000) Revised description of the fine structure of in situ “Zooxanthellae” genus Symbiodinium. Biol Bull 199:76–84

    Article  CAS  Google Scholar 

  • Wakefield TS, Kempf SC (2001) Development of host- and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a cnidarian-dinoflagellate symbiosis. Biol Bull 200:127–143

    Article  Google Scholar 

  • Wang JT, Douglas AE (1997) Nutrients, signals, and photosynthate release by symbiotic algae – The impact of taurine on the dinoflagellate alga Symbiodinium from the sea anemone Aiptasia pulchella. Plant Physiol 114:631–636

    Article  CAS  Google Scholar 

  • Wang LH, Liu YH, Ju YM, Hsiao YY, Fang LS, Chen CS (2008) Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs 27:823–835

    Article  CAS  Google Scholar 

  • Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96:8007–8012

    Article  CAS  Google Scholar 

  • Weis VM, Reynolds WS, deBoer MD, Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbodinium spp and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  Google Scholar 

  • Wilkerson F, Kobayashi D, Muscatine L (1988) Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7:29–36

    Article  Google Scholar 

  • Wood R (1998) The ecological evolution of reefs. Annu Rev Ecol Evol Syst 29:179–206

    Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993

    Article  CAS  Google Scholar 

  • Yacobovitch T, Benayahu Y, Weis VM (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria). J Exp Mar Biol Ecol 298:35–48

    Article  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Stambler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stambler, N. (2011). Zooxanthellae: The Yellow Symbionts Inside Animals. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_7

Download citation

Publish with us

Policies and ethics