Skip to main content

Advertisement

Log in

Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Colonial photosynthetic marine organisms often exhibit morphological phenotypic plasticity. Where such plasticity leads to an improved balance between rates of photosynthesis and maintenance costs, it is likely to have adaptive significance. To explore whether such phenotypic plasticity leads to more favourable within-colony irradiance for reef-building branching corals, this relationship was investigated for two coral species Acropora humilis and Stylophora pistillata, along a depth gradient representing light habitats ranging from 500 to 25 μmol photons m−2 s−1, during 2006 at Heron Island, Great Barrier Reef (23.44°S, 151.91°E). In the present study changes in flow-modulated mass transfer co-varied with light as a function of depth. In low-light (deep) habitats, branch spacing (colony openness) in A. humilis and S. pistillata was 40–50% greater than for conspecifics in high-light environments. Also, branches of A. humilis in deep water were 40–60% shorter than in shallow water. Phenotypic changes in these two variables lead to steeper within-colony light attenuation resulting in 38% higher mean internal irradiance (at the tissue surface) in deep colonies compared to shallow colonies. The pattern of branch spacing was similar for S. pistillata, but this species displayed an alternate strategy with respect to branch length: shade adapted deep and cave colonies developed longer and thinner branches, allowing access to higher mass transfer and irradiance. Corals in cave habitats allowed 20% more irradiance compared to colonies found in the deep, and had a 47% greater proportion of irradiance compared to colonies in the shallow high-light environment. Such phenotypic regulation of internal light levels on branch surfaces partly explains the broad light niches of many branching coral species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony KRN, Hoegh-Guldberg O (2003a) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259. doi:10.1046/j.1365-2435.2003.00731.x

    Article  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003b) Kinetics of coral photoacclimation. Oecologia 134:23–31. doi:10.1007/s00442-002-1095-1

    Article  Google Scholar 

  • Anthony KRN, Connolly SR (2004) Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients. Oecologia 141:373–384. doi:10.1007/s00442-004-1647-7

    Article  Google Scholar 

  • Anthony KRN, Hoogenboom MO, Connolly SR (2005) Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct Ecol 19:17–26. doi:10.1111/j.0269-8463.2005.00925.x

    Article  Google Scholar 

  • Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279

    Article  CAS  Google Scholar 

  • Brakel WH (1983) Depth-related changes in the colony form of the reef coral Porites astreoides. The ecology of deep and shallow reefs. Symp Ser Undersea Res 1:21–26

    Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW et al (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photo-protection. Coral Reefs 18:99–105. doi:10.1007/s003380050163

    Article  Google Scholar 

  • Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190

    Article  Google Scholar 

  • Bruno JF, Edmunds PJ (1998) Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing & Michelotti): the effect of morphology and water flow on aggregate respiration. J Exp Mar Biol Ecol 229:187–195. doi:10.1016/S0022-0981(98)00050-1

    Article  Google Scholar 

  • Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56. doi:10.1016/0022-0981(83)90004-7

    Article  Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115:67–77. doi:10.1016/0022-0981(88)90190-6

    Article  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116. doi:10.3354/meps272099

    Article  Google Scholar 

  • Dove S, Ortiz JC, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R et al (2006) Response of holosymbiont pigments from the scleractinian coral Monipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158

    Article  Google Scholar 

  • Dubinsky Z, Jokiel P (1994) The ratio of energy and nutrient fluxes regulates the symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:203–214

    Article  CAS  Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol (Berl) 33:101–107. doi:10.1007/BF00390714

    Article  Google Scholar 

  • Enriquez S, Pantoja-Reyes NI (2005) Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145:235–243. doi:10.1007/s00442-005-0111-7

    Article  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174. doi:10.1038/289172a0

    Article  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden

    Google Scholar 

  • Falkowski PG, Jokiel PL, Kinzie RAIII (1990) Irradiance and corals. Coral Reefs 25:89–107

    Google Scholar 

  • Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR (2005) Wave induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264

    Article  Google Scholar 

  • Goreau TF (1959) The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40:67–90. doi:10.2307/1929924

    Article  Google Scholar 

  • Graus RR, Macintyre IG (1976) Control of growth form in colonial corals: computer simulation. Science 193:895–897. doi:10.1126/science.193.4256.895

    Article  CAS  Google Scholar 

  • Graus RR, Macintyre IG (1982) Variation in growth forms of the reef coral Montastrea annularis (Ellis & Solander): A quantitative evaluation of growth response to light distribution using computer simulation. Smithson Contrib Mar Sci 12:441–464

    Google Scholar 

  • Helmuth BS, Sebens KP, Daniel TL (1997) Morphological variation in coral aggregations: branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol 209:233–259. doi:10.1016/S0022-0981(96)02687-1

    Article  Google Scholar 

  • Herbert TJ (1996) On the relationship of plant geometry to photosynthetic response. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, London, pp 139–161

    Chapter  Google Scholar 

  • Hoogenboom MO, Anthony KRN, Connolly SR (2006) Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser 313:1–12. doi:10.3354/meps313001

    Article  CAS  Google Scholar 

  • Hoogenboom MO, Anthony KRN, Connolly SR (2008) Energetic implications of phenotypic plasticity in foliose corals. Ecology (in press)

  • Jaubert J (1981) Variations of the shape and of the chlorophyll concentration of the scleractinian coral Synaraea convexa Verrill: Two complementary processes to adapt to light variations. Proc of the 4th Int Coral Reef Symp 2:55–58

    Google Scholar 

  • Jokiel PL, Morrissey JI (1993) Water motion on coral reefs: evaluation of the clod-card technique. Mar Ecol Prog Ser 93:175–181. doi:10.3354/meps093175

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99. doi:10.1046/j.1365-3040.2001.00648.x

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairmentof the CO2 mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230. doi:10.1046/j.1365-3040.1998.00345.x

    Article  CAS  Google Scholar 

  • Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol (Berl) 134:295–306. doi:10.1007/s002270050547

    Article  Google Scholar 

  • Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proc R Soc Biol Sci Ser B 272:127–133. doi:10.1098/rspb.2004.2934

    Article  Google Scholar 

  • Kawamata S (1998) Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz). J Exp Mar Biol Ecol 224:31–48. doi:10.1016/S0022-0981(97)00165-2

    Article  Google Scholar 

  • Kuhl M, Cohen Y, Daalsgard T, Jorgenen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172. doi:10.3354/meps117159

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, de Ventier L, Done T, Schmidt GW et al (2004) Closely related Symbiodinium spp differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161. doi:10.3354/meps284147

    Article  Google Scholar 

  • Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179. doi:10.1016/0022-0981(94)90034-5

    Article  CAS  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46. doi:10.1016/j.jembe.2005.06.018

    Article  CAS  Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480. doi:10.1038/nature05328

    Article  CAS  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102. doi:10.3354/meps334093

    Article  CAS  Google Scholar 

  • Muko S, Kawasaki K, Sakai K (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. Bioscience 27:454–460. doi:10.2307/1297526

    Article  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light-adapted and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:181–202

    Article  CAS  Google Scholar 

  • Patterson MR, Sebens KP, Olson RR (1991) In situ measurement of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948

    Article  CAS  Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12. doi:10.1007/BF00333208

    Article  Google Scholar 

  • Pearcy RW, Yang W (1998) The functional morphology of light capture and carbon gain in the redwood forest understorey plant Adenocaulon bicolor. Funct Ecol 12:543–552. doi:10.1046/j.1365-2435.1998.00234.x

    Article  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800. doi:10.1111/j.1469-8137.2005.01328.x

    Article  Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptaion in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:161–180

    Article  Google Scholar 

  • Porter ET, Sanford LP, Suttles SE (2000) Gypsum dissolution is not a universal integrator of “water motion”. Limnol Oceanogr 45:145–158

    Article  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD, Kuhl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol (Berl) 141:639–646. doi:10.1007/s00227-002-0866-x

    Article  CAS  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202. doi:10.3354/meps062185

    Article  Google Scholar 

  • Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733. doi:10.1111/j.1365-294X.2007.03403.x

    Article  CAS  Google Scholar 

  • Sebens KP (1997) Adaptive responses to water flow: Morphology, energetics, and distribution of reef corals. Proc 8th Int Coral Reef Symp 2:1053–1058

    Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28. doi:10.1016/S0022-0981(96)02636-6

    Article  Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Ultraviolet radiation and coral stress. Glob Change Biol 2:527–545. doi:10.1111/j.1365-2486.1996.tb00065.x

    Article  Google Scholar 

  • Thomas F, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV (2002) Reef-building corals–symbiotic autotrophic organisms: 2 Pathways and mechanisms of adaptation to light. Russ J Mar Biol 28(Supplement 1):S16–S31. doi:10.1023/A:1021833821493

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225. doi:10.1016/S0022-0981(01)00309-4

    Article  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148. doi:10.3354/meps314135

    Article  Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116. doi:10.3354/meps233105

    Article  Google Scholar 

  • Veron JEN (1995) Corals in time and space. Cornell University Press, Ithaca

    Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotpic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217. doi:10.1016/S0169-5347(00)89061-8

    Article  CAS  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the World: a revision of the coral genus Acropora. CSIRO Publishing, Collingwood

    Google Scholar 

  • Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc 5th Int Coral Reef Symp 4:107–112

    Google Scholar 

  • Winters G, Loya Y, Roettgers R, Beer S (2003) Photoinhibition in shallow-water colonies of the coral Stylophora pistillata as measured in situ. Limnol Oceanogr 48:1388–1393

    Article  Google Scholar 

  • Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22:155–166. doi:10.1007/s00338-003-0299-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Australian Research Council and University of Queensland. We thank P. Campbell, L, Franceschinis, N. Kongjandtre, A. Gallenne, M. Stock, A. Diaz-Ruiz and G. Holmes for assistance with fieldwork and two anonymous reviewers for comments on the manuscript. This is a contribution from the ARC Centre of Excellence for Coral Reef Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Kaniewska.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2008_1061_MOESM1_ESM.tif

Non-linear and linear regression summary for exponential and linear irradiance models for Acropora humilis and Stylophora pistillata irradiance profiles at Harry's Bommie (HB) and Tenements (T). Estimated coefficients are presented as means with the standard error of the mean given in parentheses (n=15), where I(d) is irradiance at position d along the branch, I(o) is the maximum irradiance at the tip of the branch and b is a coefficient indicating the steepness of the light attenuation. (TIFF 671 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaniewska, P., Anthony, K.R.N. & Hoegh-Guldberg, O. Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata . Mar Biol 155, 649–660 (2008). https://doi.org/10.1007/s00227-008-1061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1061-5

Keywords

Navigation