Skip to main content

Detection of Virus and Viroid Pathogens in Plants

  • Chapter
  • First Online:
Microbial Plant Pathogens-Detection and Disease Diagnosis:

Abstract

Plant viruses differ significantly from other microbial pathogens in their simple structure and minute size, method of replication and obligate parasitism. Despite their simple structure, they cause numerous economically important plant diseases that still remain as threat to crop production in several countries. Depending on the biological, morphological, immunological and genomic properties, several approaches have been made for the detection, identification, quantification and differentiation of the viruses. Histochemical methods employing light and electron microscopy have been shown to be useful for detecting and studying the nature of intracellular inclusions characteristic of virus infection. Certain groups of viruses can be putatively identified by the type and nature of inclusion bodies in infected plant cells. Electron microscopy using appropriate stains has been useful to study the ultrastructure of viruses. Immunological techniques have been shown to provide more rapid, sensitive and precise detection of viruses compared to biological methods that depend on inoculation to diagnostic/assay hosts that exhibit characteristic symptoms. Nucleic acid-based techniques represent significant advancement in pathogen diagnostics. They offer more reliable, reproducible, sensitive and specific results for the detection, identification and quantification of the viruses in different host plant species that are symptomatic or asymptomatic. Attempts to detect two or more viruses simultaneously present in infected plants have been successful, resulting in saving time, labor and costs of testing. In spite of all the advantages, many nucleic acid-based techniques have not yet been demonstrated to be applicable in different locations, cost-effective and suitable for large scale use under field conditions. Viroids represent a group of most primitive pathogenic entities constituting exclusively of nucleic acids that are capable of independent replication and inducing diseases when introduced into susceptible plant cells. Biological methods have been useful in detecting the viroids based on their reaction on diagnostic host plants. Nucleic acid-based techniques are the ones that can provide reliable and rapid results for their detection and identification. As it is very difficult to cure the plants already infected by viruses or viroids, the practical option available for the management of diseases caused by them is the removal of infected plants. Such an eventuality will result in devasting adverse effect on crop production. To avoid such a catastrophic possibility, adequate attention has to be bestowed for the early and reliable detection of viruses and viroids in infected seeds and vegetatively propagated materials and eliminate all infected ­materials to build virus/viroid-free nucleus stocks for distribution to growers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas M, Khan MM, Mughal SM, Jaskani MJ, Abbas H (2006) Propagation of CTV-free sweet orange [Citrus sinenesis (L.) Osbeck] plants through microbudding technique. Pak J Bot 38: 583–587

    Google Scholar 

  • Abdalla ME, Albrechten SE (2001) Petridish-ELISA, a simple and economic technique for detecting plant viruses. Acta Phytopathol Entomol Hung 36: 1–8.

    Article  Google Scholar 

  • Abou-Jwdah Y, Sobh H, Cordahi N, Kawtharani H, Nemer G, Maxwell PD, Nakhla MK (2004) Immunodiagnosis of Prune dwarf virus antiserum produced to its recombinant coat protein. J Virol Meth 121: 31–38.

    Article  CAS  Google Scholar 

  • Abouzid AM, Freitas-Astua J, Purcifull DE, Polston JE, Beckham KA, Crawford WE, Petersen MA, Peyser B, Pette C, Hiebert E (2002) Serological studies using polyclonal antisera prepared against viral coat protein of four Begomoviruses expressed in Escherichia coli. Plant Dis 86: 1109–1114.

    Article  CAS  Google Scholar 

  • Abraham A, Albrechsten SE (2000) Petrish-agar dot immuno-enzymatic assay (PADIA) – a new and inexpensive method for the detection and identification of plant viruses. Internat J Pest Manag 46: 161–164.

    Article  Google Scholar 

  • Abraham A, Albrechsten SE (2001) Comparison of penicillinase and alkaline phosphatase as labels in enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses. J Plant Dis Protect 108: 49–57.

    CAS  Google Scholar 

  • Abraham AD, Menzel W, Lessemann D-E, Varrelmann M, Vetten HJ (2006) Chickpea chlorotic stunt virus: A new Polerovirus infecting cool-season food legumes in Ethiopia. Phytopathology 96: 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Acheche H, Fattouch S, Marzouki N, Marrakchi M (1999) Use of optimized PCR methods for the detection of GLRaV 3: a closterovirus associated with grapevine in Tunisian grapevine plants. Plant Mol Biol Rep 17: 31–42.

    Article  CAS  Google Scholar 

  • Adams AN, Guise CM, Crosslety ST (1999) Plum pox virus detection in dormant plum trees by PCR and ELISA. Plant Pathol 48: 240–244.

    Article  CAS  Google Scholar 

  • Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Molec Plant Pathol, DOI: 10.1111/J.1364-3703.2009.00545.x.

    Google Scholar 

  • Adkins S, Hammond J, Gera A, Maroon-Lango CJ, Sabolev I, Harness A, Zeidan M, Spiegel S (2006) Biological and molecular characterization of a novel carmovirus isolated from Angelonia. Phytopathology 96: 460–467.

    Article  CAS  PubMed  Google Scholar 

  • Adkins S, Webb SE, Achor D, Roberts PD, Baker CA (2007) Identification and characterization of a novel whitefly-transmitted member of the family Potyviridae isolated from cucurbits in Florida. Phytopathology 97: 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Afolabi AS, Thottappilly G (2008) Comparative studies on alkaline phosphatase (ALP), alkaline phosphatase amplification (AMP), horseradish peroxidase (HRP), penicillinase (PNC) and avidin-biotin penicillinase amplification ELISA in detecting Maize streak virus (MSV) in maize plants and Cicadulina mbila (leafhoppers) insect vector. Sci Res Essay 3: 524–530.

    Google Scholar 

  • Agindotan B, Perry KL (2007) Macroarray detection of plant RNA viruses using randomly primed and amplified complementary DNAs from infected plants. Phytopathology 97: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Ahangaran A, Mohammadi GM, Habibi MK, Khezri S, Shahraeen N (2009) Use of a rapid serological and nucleic acid-based methods for detecting Soybean mosaic virus. J Agric Sci Technol 11: 91–97.

    Google Scholar 

  • Ahlawat YS, Pant RP, Lockhart BEL, Srivastava M, Chakraborty NK, Varma A (1996) Association of a badnavirus with citrus mosaic disease in India. Plant Dis 80: 590–592.

    Article  Google Scholar 

  • Ahmad YA, Royer M (2006) Geographical distribution of four Sugarcane yellow leaf virus genotypes. Plant Dis 90: 1156–1160.

    Article  CAS  Google Scholar 

  • Albiach-Marti MR, Guerri J, Cambra M, Garnsey SM, Moreno SM (2000) Differentiation of Citrus tristeza virus isolates by serological analysis of p25 coat protein peptide maps. J Virol Meth 88: 25–34.

    Article  CAS  Google Scholar 

  • Alfaro-Fernández A, Sánchez-Navarro JA, Cebrián MC, Córdoba-Sellés MC, Pallás V, Jordá C (2009) Simultaneous detection and identification of Pepino mosaic virus (PepMV) isolates by multiplex one-step RT-PCR. Eur J Plant Pathol 125: 143–158.

    Article  CAS  Google Scholar 

  • Allarangaye MD, Traore O, Traore EVS, Millogo RJ, Konate G (2006) Evidence of nontransmission of Rice yellow mottle virus through seeds of wild host species. J Plant Pathol 88: 309–315.

    Google Scholar 

  • Allen DJ (1983) The Pathology of Tropical Food Legumes Disease Resistance in Crop Improvement. Wiley, Chichester, England

    Google Scholar 

  • Al-Mrabeh A, Ziegler A, Cowan G, Torrance L (2009) A fully recombinant ELISA using in vivo biotinylated antibody fragments for the detection of Potato leafroll virus. J Virol Meth 159: 200–205.

    Article  CAS  Google Scholar 

  • Amari K, Burgos L, Pallás V, Sánchez-Piña MA (2009) Vertical transmission of Prunus ncecrotic ringspot virus: hitch-hiking from gametes to seedling. J Gen Virol 90: 1767–1774.

    Article  CAS  PubMed  Google Scholar 

  • Anfoka G, Haj Ahmad F, Abhary M, Hussein A (2009) Detection and molecular characterization of viruses associated with tomato yellow leafcurl disease in cucurbit in Jordan. Plant Pathol 58: 754–762.

    Article  CAS  Google Scholar 

  • Angelini E, Bertazzon N, Borgo M (2004) Diversity among Grapevine leaf roll-associated virus 2 isolates detected by heteroduplex mobility assay. J Phytopathol 152: 416–422.

    Article  CAS  Google Scholar 

  • Antignus Y, Wang Y, Pearlsman M, Lachman O, Lavi N, Gal-On A (2001) Biological and molecular characterization of a new cucurbit-infecting Tobamovirus. Phytopathology 91: 565–571.

    Article  CAS  PubMed  Google Scholar 

  • Aparicio F, Myrta A, Di Terlizzi B, Pallás V (1999) Molecular variability among isolates of Prunus necrotic ringspot virus from different Prunus spp. Phytopathology 89: 991–999.

    Article  CAS  PubMed  Google Scholar 

  • Aparicio F, Aramburu J, Soler S, Galipienso L, Nuez F, Pallás V, López C (2009a) Immunodiagnosis of Parietaria mottle virus in tomato crops using polyclonal antiserum against its coat protein expressed in bacterial system. J Phytopathol 157: 511 513.

    Google Scholar 

  • Aparicio F, Soler S, Aramburu J, Galipienso L, Nuez, Pallás V, López C (2009b) Simultaneous detection of six RNA plant viruses affecting tomato crops using a single digoxigenin-labeled polyprobe. Eur J Plant Pathol 123: 117–123.

    Article  CAS  Google Scholar 

  • Arabatova J, Lehto K, Pehu E, Pehu T (1998) Localization of the P1 protein of potato associated with (1) cytoplasmic inclusion bodies and (2) cytoplasm of infected cells. J Gen Virol 79: 2319–2323.

    Google Scholar 

  • Aramburu J, Moreno P (1994) Detection of double-stranded RNA (ds RNA) in crude extracts of virus-infected plants by indirect ELISA. J Phytopathol 141: 375–385.

    Article  CAS  Google Scholar 

  • Arya M, Baranwal VK, Ahlawat YS, Singh L (2006) RT-PCR detection and molecular characterization of Onion yellow dwarf virus associated with garlic and onion. Curr Sci 9: 1230–1234.

    Google Scholar 

  • Asai M, Ohara T, Takahashi T, Saito S, Tanaka K ( 1998) Detection of viroids in fruit trees by return electrophoresis. Res Bull Plant Protect Ser Jpn No. 34, 99–102.

    CAS  Google Scholar 

  • Avgelis A, Barba M (1986) Application of ELISA test for indexing Melon necrotic spot virus in melon seeds. Ann Istitut Speriment Patol Veget 11: 107–110.

    Google Scholar 

  • Avgelis AD, Katis N, Grammatikaki G (1992) Broad bean wrinkly seed caused by Artichoke yellow ringspot nepovirus. Ann Appl Biol 121: 133–142.

    Article  Google Scholar 

  • Ball EM (1971) Leaf dip serology. Meth Virol 5: 445–450.

    Google Scholar 

  • Balme-Sinibaldi V, Tribodet M, Croizat F, Lefeuvre P, Kerlan C, Jacquot E (2006) Improvement of Potato virus Y (PVY) detection and quantification using PVYN- and PVYO-specific real-time PCR assays. J Virol Meth 134: 261–266.

    Article  CAS  Google Scholar 

  • Bananej K, Keshavarz T, Vahdat A, Salekdeh GH, Glasa M (2002) Biological and molecular variability of Zucchini yellow mosaic virus in Iran. J Phytopathol 156: 654–659.

    Article  CAS  Google Scholar 

  • Banttari EE, Goodwin PH (1985) Detection of Potato viruses S, X and Y by enzyme-linked immunosorbent assay on nitrocellulose membranes (Dot-ELISA). Plant Dis 69: 202–205.

    Article  Google Scholar 

  • Baranwal VK, Majumder S, Ahlawat YS, Singh RP (2003) Sodium sulphite yields improved DNA of higher stability for PCR detection of Citrus yellow mosaic virus from citrus leaves. J Virol Meth 112: 153–156.

    Article  CAS  Google Scholar 

  • Barba M, Pasquini G, Quacquarelli A (1986) Role of seeds in the epidemiology of two almond viruses. Acta Hortic 193, 127–130.

    Google Scholar 

  • Barba M, Ragozzino E, Faggioli F (2007) Pollen transmission of Peach latent mosaic viroid. J Plant Pathol 89: 287–289.

    Google Scholar 

  • Barbosa CJ, Pina JA, Perez-Panadés J, Bernard L, Serra P, Navarro L, Duran-Vila N (2005) Mechanical transmission of citrus viroids. Plant Dis 89: 749–754.

    Article  Google Scholar 

  • Barbossa L, Loconsole G, Vovlas C (2007) Virus and virus-like diseases of citrus in Epirus. J Plant Pathol 89: 273–276.

    Google Scholar 

  • Bashir NS, Hajizadeh M (2007) Survey for Grapevine fanleaf virus in vineyards of north-west Iran and genetic diversity of isolates. Austr Plant Pathol 36: 46–52.

    Article  Google Scholar 

  • Beijerinck MW (1898)Over bean contagium vivum fluidum also orzaak van de vlekziekte der tabaksbladen. Versl.gewone Vergad Wisen naturrk Afd K Akad Wet Amst 7: 229–235.

    Google Scholar 

  • Belgrader P, Bennett W, Hadley D, Richards J, Stratton P, Mariella Jr R, Milanovich F (1999) PCR detection of bacteria in seven minutes. Science (Wash.) 284: 449–450.

    Article  CAS  Google Scholar 

  • Benson AP, Singh RT (1964) Seed transmission of Potato spindle tuber virus in tomato. Amer Potato J 41: 294.

    Google Scholar 

  • Benson AP, Raymer WB, Smith W, Jones E, Munro J (1965) Potato diseases and their control. Potato Handbook 10: 32–36.

    Google Scholar 

  • Berger PH, Thornbury DW, Pirone TP (1985) Detection of picogram quantities of potyviruses using a dot-blot immunobinding assay. J Virol Meth 12: 31.

    Article  CAS  Google Scholar 

  • Berry S, Rey MEC (2001) Differentiation of Cassava-infecting begomoviruses using heteroduplex mobility assays. J Virol Meth 92: 151–163.

    Article  CAS  Google Scholar 

  • Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Pérez-Panadés J, Cambra M (2008) Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol 120: 177–188.

    Article  CAS  Google Scholar 

  • Beuve M, Sempe L, Lemaire O (2007) A sensitive one-step real-time RT-PCR method for detecting Grapevine leaf roll-associated virus 2 variants in grapevine. J Virol Meth 141: 117–124.

    Article  CAS  Google Scholar 

  • Bezerra IC, de Resende RO, Pozzer L, Nagata T, Kormelink R, de Avila AC (1999) Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89: 823–830.

    Article  CAS  PubMed  Google Scholar 

  • Bharathan N, Reddy DVR, Rajeshwari R, Murthy VK, Rao VR, Lister RM (1984) Screening germplasm lines by enzyme-linked immunosorbent assay for seed transmission of Peanut mottle virus. Plant Dis 68: 757–758.

    Google Scholar 

  • Bhat AI, Siju S (2007) Development of a single-tube multiplex RT-PCR for the simultaneous detection of Cucumber mosaic virus and Piper yellow mottle virus associated with stunt disease of black pepper. Curr Sci 93: 973–976.

    CAS  Google Scholar 

  • Bijaisoradat M, Kuhn CW (1988) Detection of two viruses in peanut seeds by complementary DNA hybridization tests. Plant Dis 72: 956–959.

    Article  Google Scholar 

  • Bolotova YV, Karasev AV, McIntosh CS (2009) Statistical analysis of the laboratory methods used to detect Potato virus Y. Amer J Potato Res 86: 265–271.

    Article  CAS  Google Scholar 

  • Boonham N, Barker I (1998) Strain-specific recombinant antibodies to potato virus Y potyvirus. J Virol Meth 74: 193–199.

    Article  CAS  Google Scholar 

  • Boonham N, Walsh K, Preston S, North J, Smith P, Barker I (2002) The detection of tuber necrotic isolates of Potato virus Y and the acute discrimination of PVYO, PVYN and PVYC strains using RT-PCR. J Virol Meth 102: 103–112.

    Article  CAS  Google Scholar 

  • Boonham N, Walsh K, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant virus disease diagnosis. J Virol Meth 108: 181–187.

    Article  CAS  Google Scholar 

  • Boonham N, González-Pérez L, Mendez MS, Lilia Peralta E, Blockley A, Walsh K, Barker I, Mumford RA (2004) Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. J Virol Meth 116: 139–146.

    Article  CAS  Google Scholar 

  • Borodynko N, Rymelska N, Hasiów-Jaroszewska B, Pospieszny H (2009) Molecular characterization of the three soilborne sugar beet-infecting viruses based on the coat protein gene. J Plant Pathol 91: 191–193.

    CAS  Google Scholar 

  • Bosica D, Digiaro M, Safi M, Garau R, Zhou I, Minafra A, Ghanem-Sabanadzonic N, Bottalico G, Potere O (2001) Production of monoclonal antibodies to Grapevine virus D and contribution to the study of its aetiological role in grapevine disease. Vitis 40: 69–74.

    Google Scholar 

  • Breyel E, Casper R, Ansa OA, Kuhn CW, Misari SM, Demski SW (1988) A simple procedure to detect a ds-RNA associated with groundnut rosette. J Phytopathol 121: 118–124.

    Article  CAS  Google Scholar 

  • Brlansky RH, Derrick KS (1979) Detection of seedborne plant viruses using serologically-specific electron microscopy. Phytopathology 69: 96–100.

    Article  Google Scholar 

  • Bystricka D, Lenz O, Mraz I, Piherova L, Kmoch S, Sip M (2005) Oligonucleotide-based microarray: a new improvement in microassay detection of plant viruses. J Virol Meth 128: 151–155.

    Article  CAS  Google Scholar 

  • Byzova NA, Safenkova IV, Chirkov SN, Zherdev AV, Blintsov AN, Dzantiev BB, Atabekov IG (2009) Development of immunochromatogrphic test systems for express detection of plant viruses. Appl Biochem Microbiol 45: 204–209.

    Article  CAS  Google Scholar 

  • Çağlayan M, Ulubas Serce C, Gazel M, Jelkmann W (2006) Detection of four apple viruses by ELISA and RT-PCR assays in Turkey. Turk J Agric For 30: 241–246.

    Google Scholar 

  • Calavan EC, Frolich EF, Carpenter JB, Roistacher CN, Christiansen DW (1964) Rapid indexing for excortis of ctirus. Phytopathology 54: 1359–1362.

    Google Scholar 

  • Call DR, Brockman FJ, Chandler DP (2001) Detecting and genotyping Escherichia coli 0157:H7 using multiplexed PCR and nucleic acid microarrays. Internat J Food Microbiol 67: 71–80.

    Article  CAS  Google Scholar 

  • Cambra M, Camarasa E, Gorris MT, Roman MP, Asensio M, Perez E, Serra J, Cambra MA (1994) Detection of structural proteins of virus by immunoprinting: ELISA and its use for diagnosis. Investig Agric Prod Protec Veg Fuera Ser 2, 221–230.

    Google Scholar 

  • Cambra M, Olmos A, Asensio M, Esteban O, Candresse T, Gorris MT, Bosica D (1998) Detection and typing of Prunus viruses in plant tissues and in vectors by print- and spot-capture PCR, heminested PCR and PCR-ELISA. Acta Hortic 472, 257–263.

    CAS  Google Scholar 

  • Cammarco REFA, Lima JAA, Pio-Ribeiro G (1988) Transmission and presence in the soil of Papaya lethal yellowing virus. Fitopatol Bras 23: 453–458.

    Google Scholar 

  • Candresse T, Macquaire G, Brault V, Monsion M, Dumez J (1990) 32P and biotin-labeled in vitro transcribed cRNA probes for the detection of Potato spindle tuber viroid and Chrysanthmum stunt viroid. Res Virol 141: 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Candresse T, Kofalivi SA, Lanneau M, Dunez J (1998) A PCR-ELISA procedure for the simultaneous detection and identification of prunus necrotic ringspot and apple mosaic (ApMV) ilarviruses. Acta Hortic 472, 219–225.

    CAS  Google Scholar 

  • Capote N, Bertolini E, Olmos A, Vidal E, Martínez MC, Cambra M (2009) Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. Internat Microbiol 12: 1–6.

    CAS  Google Scholar 

  • Cavileer TD, Clarke RC, Corsini DL, Berger PH (1998) A new strain of potato carlavirus. Plant Dis 81: 98 – 102.

    Article  Google Scholar 

  • Cerni S, Skoric D, Ruscic J, Krajacic M, Papic T, Djelaouah K, Nolasco G (2009) East Adriatic – a reservoir of severe Citrus tristeza virus strains. Eur J Plant Pathol 124: 701–706.

    Article  Google Scholar 

  • Cerovska N, Moravec T, Plchova H, Hoffmeisterova H, Folwarczna J, Dedic P (2010) Production of polyclonal antibodies to Potato virus X using recombinant coat protein. J Phytopathol 158: 66–68.

    Article  CAS  Google Scholar 

  • Chahal A, Nassuth A (1992) Tomato spotted wilt virus: detection and location in leaf and stem tissues by press-blotting. Plant Dis Res 7: 171–179.

    Google Scholar 

  • Chakraborty MK, Ahlawat YS (2001) Indexing of cross-protected and non-cross-protected citrus cultivars/species for Citrus tristeza virus by enzyme-linked immunosorbent assay. Plant Dis Res 16: 10–16.

    Google Scholar 

  • Chang L, Zhang Z, Yang H, Li H, Dai H (2007) Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as template. J Phytopathol 155: 431–436.

    Article  CAS  Google Scholar 

  • Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P (2001) Detection of Sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis 85: 1177–1180.

    Article  Google Scholar 

  • Chen CC, Chang CA (1999) The improvement for the detection of tuberose mild mosaic potyvirus in tuberose bulbs by temperature treatment and direct tissue blotting. Plant Pathol Bull 8: 83–88.

    Google Scholar 

  • Chen TH, Lu YT (2000) Preparation of rabbit IgG-alkaline phosphatase conjugate by malemide method and its application for detecting bamboo mosaic potexvirus. Bull Nat Pingtung Univ Sci Technol 9: 125–132.

    CAS  Google Scholar 

  • Chen T-C, Huang C-W, Kuo Y-W, Liu F-L, Hsuan C-H, Hsu H-T, Yeh S-D (2006) Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96: 1296–1304.

    Article  CAS  PubMed  Google Scholar 

  • Childress AM, Ramsdell DC (1987) Bee-mediated transmission of Blueberry leaf mottle virus via infected pollen in Highbush blueberry. Phytopathology 77: 167–172.

    Article  Google Scholar 

  • Childs JFL, Norman GG, Eichhorn JL (1958) A color test for exocortis infection in Poncirus trifoliata. Phytopathology 48: 426–432.

    CAS  Google Scholar 

  • Chou C-N, Chen C-E, Wu M-L, Su H-J, Yeh H-H (2009) Biological and molecular characterization of Taiwanese isolates of Cucumber mosaic virus associated with banana mosaic disease. J Phytopathol 157: 85–93.

    Article  CAS  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay. J Gen Virol 34: 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Clark MF, Bar-Joseph M (1984) Enzyme immunosorbent assays in plant virology. Meth Virol 7: 51–85.

    Google Scholar 

  • Clark MF, Adams AN, Barbara DJ (1976) The detection of plant viruses by enzyme-linked immunosorbent assay (ELISA). Acta Hortic 67, 43–49.

    Google Scholar 

  • Cogotzi L, Giampetruzzi A, Nölke G, Orecchia M, Elicio V, Castellano MA, Martelli GP, Fischer R, Schillberg S, Saldarelli P (2009) An assay for the detection of Grapevine leaf roll-associated virus 3 using a single-chain fragment variable antibody. Arch Virol 154: 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Conejero V, Picazo I, Segado P (1979) Citrus excortis viroid (CEVd): protein alterations in different hosts following viroid infection. Virology 97: 454–456.

    Article  CAS  PubMed  Google Scholar 

  • Creamer R, Hubble H, Lewis A (2005) Curtovirus infection in chile pepper in New Mexico. Plant Dis 89: 480–486.

    Article  CAS  Google Scholar 

  • Credi R (1997) Indexing tests on a grapevine rugose wood disease and mechanical transmission of two associated viruses. Phytopathol Medit 36: 1–17.

    Google Scholar 

  • Crosslin JM, Hamm PB, Shiel PJ, Hane DC, Brown CR, Berger PH (2005) Serological and molecular detection of tobacco veinal necrosis isolates of Potato virus Y (PVYN) from potatoes grown in the western United States. Amer J Potato Res 82: 263–269.

    Article  CAS  Google Scholar 

  • Crosslin JM, Hamm PB, Hane DC, Jaeger J, Brown CR, Shiel PJ, Berger PH, Thornton RE (2006) The occurrence of PVYO, PVYN and PVYN:O strains of Potato virus Y in certified potato seedlot trials in Washington and Oregon. Plant Dis 90: 1102–1105.

    Article  Google Scholar 

  • Culver JN, Sherwood JL (1988) Detection of Peanut stripe virus in peanut seed by an indirect enzyme-linked immunosorbent assay using a monoclonal antibody. Plant Dis 72: 679.

    Article  Google Scholar 

  • D’Onghia AM, Djelouah K, Alioto D, Castellano MA, Savino V (1998) ELISA correlates with biological indexing for detection of citurs psorosis-associated virus. J Plant Pathol 80: 157–163.

    Google Scholar 

  • Dalfosse P, Reddy AS, Legréve A, Devi PS, Devi KT, Maraite H, Reddy DVR (1999) Indian peanut clum virus (IPCV) infection on wheat and barley, symptoms, yield loss and transmission through seeds. Plant Pathol 48: 273–282.

    Article  Google Scholar 

  • Damsteegt VD, Waterworth HE, Mink GI, Howell WE, Levy L (1997) Prunus tomentosa as a diagnostic host for the detection of Plum pox virus and other Prunus viruses. Plant Dis 81: 329–332.

    Article  Google Scholar 

  • Damsteegt VD, Stone AL, Waterworth HE, Mink GI, Howell WE, Levy I (1998) The versatility of Prunus tomentosa as a bioindicator of viruses. Acta Hortic 472, 143–146.

    Google Scholar 

  • Damsteegt VD, Stone AL, Russo AJ, Luster DG, Gildow FE, Smith OP (1999) Identification, characterization and relatedness of luteovirus isolates from forage legumes. Phytopathology 89: 374–379.

    Article  CAS  PubMed  Google Scholar 

  • Davies JW, Kaesberg P, Diener TO (1974) Potato spindle tuber viroid XII: an investigation of viroid RNA as messenger for protein synthesis. Virology 61: 281–286.

    Article  CAS  PubMed  Google Scholar 

  • de Assis Filho FM, Sherwood JL (2000) Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology 90: 1233–1238.

    Article  PubMed  Google Scholar 

  • de Blas D, Borja MJ, Saiz M, Romero J (1994) Broad spectrum detection of Cucumber mosaic virus (CMV) using polymerase chain reaction. J Phytopathol 141: 323–329.

    Article  Google Scholar 

  • De Bokx JA (1987) Characterization and identification of potato viruses and viroids: Biological properties. In: De Bokx JA, van der Want JPH (ed), Viruses of Potatoes and Seed-Potato Production. Center for Agricultural Publishing and Documentation, Wageningen, pp. 58–82.

    Google Scholar 

  • Delwart ELH, Sheppard HW, Walker BC, Goudsmit J, Mullins I (1994) Human immunodeficiency virus type I evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 68: 6672–6683.

    CAS  PubMed  Google Scholar 

  • Derks AFLM, Lemmers MEC, Hollinger TC (1997) Detectability of viruses in lily depends on virus host and storage conditions. Acta Hortic 430, 663–640.

    Google Scholar 

  • Derrick KS (1972) Immunospecific grids for electron microscopy of plant viruses. Phytopathology 62: 753 (Abst.).

    Google Scholar 

  • Derrick KS (1973) Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56: 652–653.

    Article  CAS  PubMed  Google Scholar 

  • Desvignes JC, Boyé R, Cornaggia D, Grasseau N (1999) Virus diseases of fruit trees. Ctifl Paris, France.

    Google Scholar 

  • Deyong Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey E (2005) Differentiation of Cucumber mosaic virus isolates by hybridization to oligonucleotides in a microarray format. J Virol Meth 123: 101–2005.

    Article  CAS  Google Scholar 

  • Dicenta F, Martinez-Gomez P, Bellanger I, Audergon JM (2000) Localization of Plum pox virus in stem and petiole tissues of apricot cultivars by immune-tissue printing. Acta Virol 44: 323–328.

    CAS  PubMed  Google Scholar 

  • Diener TO (1971) Potato spindle tuber “virus” IV: a replicating, low molecular weight RNA. Virology 45: 411–428.

    Article  CAS  PubMed  Google Scholar 

  • Diener TO (1979) Viroids and Viroid Diseases. Wiley, New York.

    Google Scholar 

  • Diener TO, Smith DR, Galindo AJ (1985) PM antigen: a disease-associated host protein in viroid-infected tomato. In: Maramorosch K, McKelvey Jr JJ (ed), Subviral Pathogen of Plants and Animals: Viroids and Prions. Academic, New York, pp. 299–313.

    Google Scholar 

  • Dietzgen RG, Twin J, Tally J, Selladurai S, Carroll ML, Coutts BA, Berryman DI, Jones RAC (2005) Genetic variability of Tomato spotted wilt virus in Australia and validation of real-time RT-PCR for its detection in single and bulked samples. Ann Appl Biol 146: 517–530

    Article  CAS  Google Scholar 

  • Digiaro M, Elbeaino T, Martelli GP (2007) Development of degenerated and species-specific primers for the differential and simultaneous RT-PCR detection of grapevine-infecting nepoviruses of subgroup A, B and C. J Virol Meth 41: 34–40.

    Article  CAS  Google Scholar 

  • Dikova B (2005) Tobacco rattle virus (TRV) transmission by sugar beet seeds. Biotechnol Biotechnol EQ 19: 87–90.

    Google Scholar 

  • Dimock AW, Geissinger CM, Horst RK (1971) Chlorotic mottle: a newly recognized disease of chrysanthemum. Phytopathology 61: 415–419.

    Article  Google Scholar 

  • Dinant S, Lot H (1992) Lettuce mosaic virus: a review. Plant Pathol 41: 528–542.

    Article  Google Scholar 

  • Ding XS, Cockbain AJ, Govier DA (1992) Improvements in the detection of Pea seedborne mosaic virus by ELISA. Ann Appl Biol 121: 75–83.

    Article  Google Scholar 

  • Dolares-Talens AC, Hill JH, Durand DP (1989) Application of enzyme-linked fluorescent assay (ELFA) to detection of Lettuce mosaic virus in lettuce seeds. J Phytopathol 124: 149–154.

    Google Scholar 

  • Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Ann Rev Imunol 15: 617–648.

    Article  CAS  Google Scholar 

  • Dore I, Weiss E, Alttschuh D, Van Regenmortel MHV (1988) Visualization by electron microscopy of the location of Tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology 162: 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Dovas CI, Katis NI (2003) A spot nested RT-PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevines. J Virol Meth 107: 99–106.

    Article  CAS  Google Scholar 

  • Du ZQ, Li L, Wang XX, Zhou GH (2000) Detection of PAV serum type of BYDV with ISEM. Plant Protect 26: 31.

    Google Scholar 

  • Du ZY, Chen JS, Hiruki C (2006) Optimization and application of a multiplex RT-PCR system for simultaneous detection of five potato viruses using 18S RNA as an internal control. Plant Dis 90: 185–189.

    Article  CAS  Google Scholar 

  • Duran-Vila N, Semancik JS, Broadbent P (2000) Viroid diseases, cachexia and exocortis. In: Timmer LW, Garnsey SM, Graham JH (ed), Compendium of Citrus Diseases. APS, St. Paul, MN, pp. 51–54.

    Google Scholar 

  • Eastwell KC, Nelson ME (2007) Occurrence of viroids in commercial hop (Humulus lupulus L.) production areas of Washington State. Plant Mgt Network, pp. 1–8.

    Google Scholar 

  • Eiras M, Targon MLPN, Fajardo TVM, Flores R, Kitajima EW (2006) Citrus exocortis viroid and Hot stunt viroid doubly infecting grapevines in Brazil. Fitopatol Bras 31: 440–446.

    Google Scholar 

  • El Far MM, Ashoub A (2009) Utility of thermotherapy and meristem tip for freeing sweet potato from viral infection. Austr J Basic Appl Sci 3: 153–159.

    Google Scholar 

  • El-Dougdoug Kh A (1998) Occurrence of Peach latent mosaic viroid in apple (Malus domestica) Ann Agric Sci (Cairo) 43: 21–30.

    Google Scholar 

  • El-Dougdoug Kh A, Hazaa MM, Gomaa HA, El-Maaty SA (2006) Eradication of banana viruses from naturally infected banana plants. 1. Biological and molecular methods of detection of Cucumber mosaic virus and Banana bunchy top virus in naturally infected banana plants. J Appl Sci Res 2: 1156–1163.

    Google Scholar 

  • Erokhina TN, Zinovkin RA, Vitushikna MV, Jelkmann W, Agraonvsky AA (2000) Detection of Beet yellows virus methyltransferase-like and helicase-like proteins in vivo using monoclonal antibodies. J Gen Virol 81: 597–603.

    CAS  PubMed  Google Scholar 

  • Eun AJ, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90: 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Fadda Z, Daros JA, Fagoaga C, Flores R, Duran-Vila N (2003) Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol 77: 6528–6532.

    Article  CAS  PubMed  Google Scholar 

  • Faggioli F, Ferretti L, Albanese G, Sciarroni R, Pasquine G, Lumia V, Barba M (2005) Distribution of olive tree viruses in Italy as revealed by one-step RT-PCR. J Plant Pathol 89: 49–55.

    Google Scholar 

  • Falk BW, Tsai JH, Lommel SA (1987) Differences in levels of detection for the Maize stripe virus capsid and major noncapsid protein in plant and insect hosts. J Gen Virol 68: 1801–1811.

    Article  CAS  Google Scholar 

  • Faria JC, Maxwell DP (1999) Variability in geminvirus isolates associated with Phaseolus spp. in Brazil. Phytopathology 89: 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Faris-Mukhayyish S, Makkouk KM (1983) Detection of four seedborne plant viruses by enzyme-linked immunosorbent assay (ELISA). Phytopathol Z 106: 108–114.

    Article  Google Scholar 

  • Fattouch S, Acheche H, M’hirsi S, Marrakchi M, Marzouki N (2005a) Detection and characterization of two strains of grapevine fanleaf nepovirus in Tunisia. Bull OEPP/EPPO 35: 265–270.

    Google Scholar 

  • Fattouch S, Acheche H, M’hirsi S, Mellouli L, Bejar S, Marrakchi M, Marzouki N (2005b) RT-PCR-RFLP for genetic diversity analysis of Tunisian Grape fanleaf virus isolates in their natural host plants. J Virol Meth 127: 126–132.

    Article  CAS  Google Scholar 

  • Fernow KH, Peterson LC, Plasited RL (1970) Spindle tuber virus in seeds and pollen of infected potato plants. Amer Potato J 47: 75–80.

    Article  Google Scholar 

  • Figueira AR, Domier LL, D’Arcy CJ (1997) Comparison of techniques for detection of Barley yellow dwarf virus-PAV-IL. Plant Dis 81: 1236–1240.

    Article  CAS  Google Scholar 

  • Finetti-Sialer MM, Ciancio A (2005) Isolate specific detection of Grapevine fanleaf virus from Xiphinema index through DNA-based molecular probes. Phytopathology 95: 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M, Schilberg S (1999) Expression and characterization of bispecific single-chain Fv-fragments produced in transgenic plants. Eur J Biochem 262–810–816.

    Article  CAS  PubMed  Google Scholar 

  • Flores R, Duran-Vila N, Pallás V, Semancik JS (1985) Detection of viroid and viroid-like RNAs from grapevine. J Gen Virol 66: 2095–2102.

    Article  CAS  Google Scholar 

  • Flores R, De la Pena M, Navarro B (2003) Chrysanthemum chlorotic mottle viroid. In: Hadidi A, Flores R, Randles JW, Semancik JS (ed), Viroids. CSIRO, Collingwood, pp. 224–227.

    Google Scholar 

  • Flores R, Randles JW, Owens RA, Bar-Joseph M, Diener TO (2005) Subviral agents: viroids. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (ed), Virus taxonomy VIII. Academic, New York, pp. 1147–1161.

    Google Scholar 

  • Foissac X, Svanella-Dumas L, Gentit P, Dulucq M, Marais M, Candresse T (2005) Polyvalent degenerate oligonucleotides reverse transcription-polymerase chain reaction: a polyvalent detection and characterization tool for Trichoviruses, Capilloviruses and Foveaviruses. Phytopathology 95: 617–625.

    Article  CAS  PubMed  Google Scholar 

  • Formitcheva VW, Schubert J, Rabenstein F, Habekuß A (2005) Immunodetection of the replicase complex of Barley yellow dwarf virus-PAV in vitro. Eur J Plant Pathol 112: 259–266.

    Article  CAS  Google Scholar 

  • Forster RL, Seifers DL, Strausbaugh CA, Jensen SG, Ball EM, Harvey TL (2001) Seed transmission of the High Plains Virus in sweet corn. Plant Dis 85: 696–699.

    Article  Google Scholar 

  • Frossyniotis D, Anthpoulos Y, Kintzios S, Moschopoulou G, Yialouris CP (2008) Artificial neural network selection for the detection of plant viruses. World J Agric Sci 4: 114–120.

    Google Scholar 

  • Fuchs E, Gruntizig M, Kegler H, Krczal G, Avenarius V (1995) A biological test for charactereizing of Plum pox virus strains. Rasten dni Nauki 32: 33–35.

    Google Scholar 

  • Fukuta S, Iida T, Mizukami Y, Ishida A, Ueda T, Kanbe M, Ishimoto Y (2003) Detection of Japanese yam mosaic virus by RT-LAMP. Arch Virol 148: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Ohishi K, Yoshida K, Mizukami Y, Ishida A, Kanbe M (2004) Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of Tomato spotted wilt virus from chrysanthemum. J Virol Meth 121: 49–55.

    Article  CAS  Google Scholar 

  • Galipienso L, Herranz MC, Pallás V, Aramburu J (2005) Detection of a tomato strain of Parietaria mottle virus (PMoV-T) by molecular hybridization and RT-PCR in field samples for north-eastern Spain. Plant Pathol 54: 29–35.

    Article  CAS  Google Scholar 

  • Gambino G, Gribaudo I (2006) Simultaneous detection of new grapevine viruses by multiplex reverse transcription-polymerase chain reaction with coamplification of a plant RNA as an internal control. Phytopathology 96: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  • Gambley CF, Steele V, Geering ADW, Thomas JE (2008) The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Austr Plant Pathol 37: 95–105.

    Article  CAS  Google Scholar 

  • Gambley CF, Geering ADW, Thomas JE (2009) Development of an immunomagnetic capture-reverse transcriptase-PCR assay for three pineapple ampeloviruses. J Virol Meth 155: 187–192.

    Article  CAS  Google Scholar 

  • Garcia ML, Sanchez de la Torre MI, Bo ED, Dielouah K, Rouag N, Luisoni E, Milne RG, Grau O (1997) Detection of Citrus psorosis ringspot virus using RT-PCR and DAS-ELISA. Plant Pathol 46: 830–836.

    Article  CAS  Google Scholar 

  • Gentit P (2006) Detection of Plum pox virus: biological methods. Bull OEPP/EPPO 36: 251–253.

    Google Scholar 

  • Gerber M, Sarkar S (1988) Comparison between urease and phosphatase in virus diagnosis with ELISA technique. J Plant Dis Protect 95: 544–550.

    CAS  Google Scholar 

  • Ghabrial SA, Shepherd RJ (1982) Radio-immunoassay for the detection of Lettuce mosaic virus in lettuce seed. Plant Dis 66: 1037–1040.

    Article  Google Scholar 

  • Ghanem-Sabanadzovic NA, Abbadi H, Al Rawahnih M, Castellano MA, Myrta A (2005) Identification and partial characterization of an isolate of Apricot latent virus from Palestine. J Plant Pathol 87: 37–41.

    Google Scholar 

  • Ghanim M, Brumin M, Popovski S (2009) A simple, rapid and expensive method for localization of Tomato yellow leafcurl virus and Potato leafroll virus in plant and insect vectors. J Virol Meth 159: 311–314.

    Article  CAS  Google Scholar 

  • Ghosh DK, Aglave B, Baranwal VK (2008) Simultaneous detection of one RNA and one DNA virus from naturally infected plants using duplex PCR technique. Curr Sci 94: 1314–1318.

    CAS  Google Scholar 

  • Gibbs A, Armstrong J, MacKenzie AM, Weiller G (1998) The GPRIME package: computer programs for identifying the best regions of aligned genes to target in nucleic acid hybridization-based diagnostic tests and their use with plant viruses. J Virol Meth 74: 67–76.

    Article  CAS  Google Scholar 

  • Gillaspie Jr AG, Mitchell SE, Stuart GN, Bozarth RF (1999) RT-PCR method for detecting cowpea mottle carmovirus in Vigna germplasm. Plant Dis 83: 639–643.

    Article  CAS  Google Scholar 

  • Gillaspie Jr AG, Pio-Ribeiro G, Andrade GP, Pappu MR (2001) RT-PCR detection of seedborne Cowpea aphidborne mosaic virus in peanut. Plant Dis 85: 1181–1182.

    Article  CAS  Google Scholar 

  • Gillaspie Jr AG, Wang ML, Pinnow DL, Pittman RN (2007) Polymerase chain reaction for detection of Peanut mottle and Peanut strip viruses in Arachis hypogaea L. germplasm seedlots. Plant Pathol J 6: 87–90.

    Article  Google Scholar 

  • Gilmer R, Way R (1961) Pollen transmission of necrotic ring and prune dwarf viruses in sour cherry. Tidsski Planteueaul 65: 111–117.

    Google Scholar 

  • Gispert C, Perring TM, Creamer R (1998) Purification and characterization of Peach mosaic virus. Plant Dis 82: 905–908.

    Article  CAS  Google Scholar 

  • Góra-Sochacka A (2004) Viroids: unusual small pathogenic RNAs. Acta Biochim Polonica 51: 587–607.

    Google Scholar 

  • Goszczynski DE, Jooste AEC (2003) Identification of grapevines infected with divergent variants of Grapevine virus A using variant-specific RT-PCR. J Virol Meth 112: 157–164.

    Article  CAS  Google Scholar 

  • Gough KH, Shukla DD (1980) Further studies on the use of protein A in immune electron microscopy for detecting virus particles. J Gen Virol 51: 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Griep RA, Prins M, van Twisk C, Keller HJHG, Kerschbaumer RJ, Kormelink R, Goldbach RW, Schots A (2000) Application of phage display in selecting Tomato spotted wilt virus specific single-chain antibodies (scFv) for sensitive diagnosis in ELISA. Phytopathology 90: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Grogan RG (1983) Lettuce mosaic virus control by use of virus-indexed seed. Seed Sci Technol 11: 1043–1049.

    Google Scholar 

  • Gugerli P, Brugger JJ, Ramel ME (1997) Immunochemical identification of the sixth Grapevine leaf roll-associated virus (GLRaV-6) and improvement of the diagnostic features for the sanitary selection in viticulture. Rev Swiss de Vitic d’Arboric et d’Hortic 29: 137–141.

    Google Scholar 

  • Gümüs M, Paylan IC, Matic S, Myrta A, Sipahioglu HM, Erkan S (2007) Occurrence and distribution of stone fruit viruses and viroids in commercial plantings of Prunus species in western Anatolia, Turkey. J Plant Pathol 89: 265–268.

    Google Scholar 

  • Gunasinghe UB, German TL (1989) Purification and partial characterization of a virus from pineapple. Phytopathology 79: 1337–1341.

    Article  Google Scholar 

  • Habekuss A, Kühne T, Krämer I, Rabenstein F, Ehrig F, Ruge-Wehling B, Huth W, Ordon F (2008) Identification of Barley mild mosaic virus isolates in Germany breaking rym5 resistance. J Phytopathol 156: 36–41.

    CAS  Google Scholar 

  • Habili N (1993) Detection of Australian field isolates of Citrus tristeza virus by double-stranded RNA analysis. J Phytopathol 138: 308–316.

    Article  CAS  Google Scholar 

  • Habili N, Farrokhi N, Lima MF, Nicholas P, Randles JW (2006) Distribution of Rupestris stem pitting-associated virus variants in two Australian vineyards showing different symptoms. Ann Appl Biol 148: 91–96.

    Article  Google Scholar 

  • Hadidi A, Levy L, Podleckis EV (1995) Polymerase chain reaction technology in plant pathology. In: Singh RP, Singh US (ed), Molecular Methods in Plant Pathology. CRC, Boca Raton, FL, pp. 167–187.

    Google Scholar 

  • Hadidi A, Giunchedi L, Shamloul AM, Poggi-Pollini C, Amer MA (1997) Occurrence of Peach latent mosaic viroid in stone fruits and its transmission with contaminated blades. Plant Dis 81: 154–158.

    Article  CAS  Google Scholar 

  • Hafner GJ, Harding RM, Dale JL (1995) Movement and transmission of Banana bunchy top virus DNA component 1 in bananas. J Gen Virol 76: 2279–2285.

    Article  CAS  PubMed  Google Scholar 

  • Halgren A, Tzanetakis IE, Martin RR (2007) Identification, characterization and detection of Black raspberry necrosis virus. Phytopathology 97: 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RI, Nicholas C (1978) Serological methods for detection of Pea seedborne mosaic virus in leaves and seeds of Pisum sativum. Phytopathology 68: 539–543.

    Article  Google Scholar 

  • Hammond J (1998) Serological relationships between cylindrical inclusion proteins of potyviruses. Phytopathology 88: 965–971.

    Article  CAS  PubMed  Google Scholar 

  • Hansen IM, Paeleman A, Witteman L, Goen K, Lievens B, Bragard C (2008) Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol 121: 131–146.

    Article  Google Scholar 

  • Harju VA, Skelton A, Clover GRG, Ratti C, Boonham N, Henry CM, Mumford RA (2005) The use of real-time RT-PCR (TaqMan) and post-ELISA virus release for the detection of Beet necrotic yellow vein virus types containing RNA5 and its comparison with conventional RT-PCR. J Virol Meth 123: 73–80

    Article  CAS  Google Scholar 

  • Harper K, Creamer R (1995) Hybridization detection of insect-transmitted plant viruses with digoxigenin-labeled probes. Plant Dis 79: 563–567.

    Article  Google Scholar 

  • Harper K, Kerschbaumer RJ, Ziegler A, MacIntosh SM, Cowan GH, Himmler G, Mayo MA, Torrance L (1997) A scFv-alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. J Virol Meth 63: 237–242.

    Article  CAS  Google Scholar 

  • Harper G, Osuji J, Heslop-Harrison JS, Hull R (1999) Integration of banana streak badnavirus into the Musa genome: molecular and genetic evidence. Virology 255: 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Harper G, Hart D, Moult S, Hull R (2002) Detection of Banana streak virus in field samples of bananas from Uganda. Ann Appl Biol 141: 247–257.

    Article  Google Scholar 

  • Harrison BD, Robinson DJ (1982) Genome reconstitution and nucleic acid hybridization as methods of identifying particles-deficient isolates of Tobacco rattle virus in potato plants with stem mottle disease. J Virol Meth 5: 255–265.

    Article  CAS  Google Scholar 

  • Hassan M, Ryšánek P (2004) Occurrence of mixed infection of Peach latent mosaic viroid and Hop stunt viroid in Czech Republic. Acta fytotech zootech 7: 81–82.

    Google Scholar 

  • Hassan M, Zouhar M, Ryšánek P (2004) Development of a PCR method of Peach latent mosaic viroid and Hop stunt viroid detection for certification of planting material. Acta Fytotech Zootech 7: 83–85.

    Google Scholar 

  • Hassan M, Gomez G, Pallás V, Myrta A, Ryšánek P (2009) Simultaneous detection and genetic variability of stone fruit viroids in the Czech Republic. Eur J Plant Pathol 124: 363–368.

    Article  Google Scholar 

  • Hassani IF, Roussel S, Kummert J, Fakhakh H, Marrakchi M, Jijakli MH (2006) Development of a rapid RT-PCR test for the detection of Peach latent mosaic viroid, Pear blister canker viroi, and Apple scar skin viroid in fruit trees from Tunisia. J Phytopathol 154: 217–223.

    Article  Google Scholar 

  • Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R (2005) A new tomato-infecting tospovirus from Iran. Phytopathology 95: 852–858.

    Article  CAS  PubMed  Google Scholar 

  • Hassen IF, Roussel S, Kummert J, Fakhfakh H, Marrakchi M, Jijakli MH (2006) Development of a rapid RT-PCR test for the detection of Peach latent mosaic viroid, Pear blister canker viroid, Hop stunt viroid and Apple scar skin viroid in fruit trees from Tunisia. J Phytopathol 154: 217–223.

    Article  CAS  Google Scholar 

  • Hataya T, Inoue AK, Shikata E (1994) A PCR-microplate hybridization method for plant virus detection. J Virol Meth 46: 223–236.

    Article  CAS  Google Scholar 

  • He X-H, Liu SJ, Perry KC (1998) Identification of epitopes in Cucumber mosaic virus using a phage-displayed random peptide library. J Gen Virol 79: 3145–3153.

    CAS  PubMed  Google Scholar 

  • Helguera M, Bravo-Almonacid F, Kobayashi K, Rabinowicz PD, Conci V, Mentaberry (1997) Immunological detection of a Gar V-type virus in Argentine garlic cultivars. Plant Dis 81: 1005–1010.

    Article  CAS  Google Scholar 

  • Henco K, Sanger HL, Riesner D (1979) Fine structure melting of viroids as studied by kinetic method. Nucleic Acids Res 6: 3041–3059.

    Article  CAS  PubMed  Google Scholar 

  • Herranz MC, Sanchez-Navarro JA, Aparicio F, Pallás V (2005) Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J Virol Meth 124: 49–55.

    Article  CAS  Google Scholar 

  • Hiebert E, Purcifull DE, Christie RG (1984) Purification and immunological analysis of plant viral inclusion bodies. In: Maramorosch K, Koprowski H (ed), Methods in Virology, Vol 8, Academic, New York, pp. 225–280.

    Google Scholar 

  • Hildbrand WF (1957) Certification program for maintenance of virus-free propagation sources of citrus in California. In: Wallace JM (ed) Citrus Virus Diseases. University of California, CA, pp. 229–231.

    Google Scholar 

  • Hilf ME, Karasev AV, Albiach-Marti MR, Dawson WO, Garnsey SM (1999) Two paths of sequence divergence in the Citrus tristeza virus complex. Phytopathology 89: 332–336.

    Article  Google Scholar 

  • Hill JH, Durand DP (1986) Soybean mosaic virus. In: Bergmeyer HU, Bergmeyer J, Grabl M (ed), Methods of Enzymatic Analysis, Vol 11. VCH Publishers, Weinheim, pp. 455–474.

    Google Scholar 

  • Hinrichs J, Berger S, Shaw JG (1997) Induction of antibiotics to plant viral proteins by DNA-based immunization. J Virol Meth 66: 195–202.

    Article  CAS  Google Scholar 

  • Hodgson RAJ, Wall GC, Randles JW (1998) Specific identification of Coconut tinangaja viroid for differential field diagnosis of viroids in coconut palm. Phytopathology 88: 774–781.

    Article  CAS  PubMed  Google Scholar 

  • Holy S, Abou Haidar MG (1993) Production of infectious in vitro transcripts from a full length Clover yellow mosaic virus cDNA clone. J Gen Virol 74: 781–784.

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Kameya-Iwaki M, Hanada K, Tochihara K, Tokashiki I (1989) Occurrence of Tomato spotted wilt virus on watermelon in Japan. Food Fert Technol Center Tech Bull 114, 15–19.

    Google Scholar 

  • Hosokawa M, Matsushita Y, Uchida H, Yazawa S (2006) Direct RT-PCR method for detecting two chrysanthemum viroids using minimal amounts of plant tissue. J Virol Meth 131: 28–33.

    Article  CAS  Google Scholar 

  • Hosokawa M, Shiba H, Kawabe T, Nakashima A, Yazawa S (2007) A simple and simultaneous detection method for two different viroids infecting chrysanthemum by multiple direct RT-PCR. J Japan Soc Hort Sci 76: 60–65.

    Article  CAS  Google Scholar 

  • Howell WE, Mink GI, Hurt SS, Foster JA, Postman JD (1996) Select Malus clones for rapid detection of Apple stem grooving virus. Plant Dis 80: 1200–1202.

    Article  Google Scholar 

  • Hristova D, Yordanov A, Mavrodieva V (2002) Differentiation of Bulgarian isolates from Cucumber mosaic virus by serological methods. J Phytopathol 150: 334–339.

    Article  Google Scholar 

  • Hsu HT, Lawson RH (1991) Direct tissue blotting for detection of Tomato spotted wilt virus in Impatiens. Plan Dis 75: 292–295

    Article  CAS  Google Scholar 

  • Hsu HT, Vongsasitron D, Lawson RH (1992) An improved method for serological detection of cymbidium mosaic potexvirus infection in orchids. Phytopathology 82: 491–495.

    Article  CAS  Google Scholar 

  • Hsu YH, Annamalai P, Lin CS, Chen YY, Chang WC, Lin NS (2000) A sensitive method for detecting Bamboo mosaic virus (BaMV) and establishment of BaMV-free meristem-tip cultures. Plant Pathol 49: 101–107.

    Article  CAS  Google Scholar 

  • Hsu YC, Yeh TJ, Chang YC (2005) A new combinations of RT-PCR and reverse dot hybridization for rapid detection and identification of potyviruses. J Virol Meth 128: 54–60.

    Article  CAS  Google Scholar 

  • Hu WW, Wong S-M (1998) The use of DIG-labeled cRNA probes for the detection of cymbidium mosaic potexvirus (CyMV) and odontoglossum ringspot tobamovirus (ORSV) in orchids. Chinese J Virol 13: 159–163.

    Google Scholar 

  • Hu JS, Sether DM, Liu XP, Wang M, Zee F, Ullman DE (1997) Use of a tissue blotting immunoassay to examine the distribution of pineapple closterovirus in Hawaii. Plant Dis 81: 1150–1154.

    Article  Google Scholar 

  • Hu WC, Huang C-H, Lee S-C, Wu C-I, Chang Y-C (2010) Detection of four calla potyviruses by multiplex RT-PCR using nad5 mRNA as an internal control. Eur J Plant Pathol 126: 43–52.

    Article  CAS  Google Scholar 

  • Huang Z, Rundell PA, Guan X, Powell CA (2004) Detection and isolate differentiation of Citrus tristeza virus in infected field trees based on reverse transcription-polymerase chain reaction. Plant Dis 88: 625–629.

    Article  CAS  Google Scholar 

  • Huet H, Mahendra S, Wang J, Sivamani E, Ong CA, Chen L, de Kochko A, Beachy RN, Fauquet C (1999) Near immunity to Rice tungro spherical virus achieved in rice by replicase-mediated resistance strategy. Phytopathology 89: 1022–1027.

    Article  CAS  PubMed  Google Scholar 

  • Hughes Jd’A, Ollennu LA (1993) The virobacterial test as a rapid means of detecting Cocoa swollen shoot virus. Ann Appl Biol 122: 299–310.

    Article  Google Scholar 

  • Huttinga H (1996) Sensitivity of indexing procedures for viruses and viroids. Adv Bot Res 23: 59–71.

    Article  Google Scholar 

  • Iannelli D, Barba M, D’Apice L, Pasquini G, Capparelli R, Monti Z, Parrella G, Scala F, Noviello C (1996) Cytofluorimetric method for the detection of the Cucumber mosaic virus. Phytopathology 86: 959–965.

    Article  Google Scholar 

  • Iannelli D, D’Apice L, Cottone C, Viscardi M, Scala F, Zonia A, del Sorbo G, Spigno P, Capparelli R (1997) Simultaneous detection of Cucumber mosaic virus, Tomato mosaic virus and Potato virus Y by flow cytometry. J Virol Meth 69: 137–145.

    Article  CAS  Google Scholar 

  • ICVG (2003) Recommendation for the certification of grapevine propagating material. 14th Meeting General Assembly, ICVG, Locortondo, Italy: www.icvg.ch/data/recomm.pdf (marec 2007)

  • Ilmberger N, Willingmann P, Adam G, Heinze C (2007) A subgroup 1 Tobamovirus isolated from Brugmansia sp. and its detection by RT-PCR. J Phytopathol 155: 326–332.

    Article  CAS  Google Scholar 

  • Iracheta-Cárdenas MM, Metheney P, Polek ML, Manjunath KL, Lee RF, Roch-Pena MA (2009) Serological detection of Citrus tristeza virus with antibodies developed to the recombinant coat protein. Plant Dis 93: 11–16.

    Article  Google Scholar 

  • Ito T, Kanematsu S, Kogenezawa H, Tsuchizaki T, Yoshida K (1993) Detection of viroid associated with apple crinkle disease. Ann Phytopath Soc Jpn 59: 520–527.

    CAS  Google Scholar 

  • Jafarpour B, Shepherd RJ, Grogan RG (1979) Serologic detection of Bean common mosaic and Lettuce mosaic viruses in seed. Phytopathology 69: 1125–1129.

    Article  Google Scholar 

  • James D, Mukerji S (1996) Comparison of ELISA and immuno-blotting techniques for the detection of Cherry mottle leaf virus. Ann Appl Biol 129: 13–23.

    Article  Google Scholar 

  • James D, Jelkmann W, Upton C (1999) Specific detection of Cherry leaf mottle virus using digoxigenin-labeled cDNA probes and RT-PCR. Plant Dis 83: 235–239.

    Article  CAS  Google Scholar 

  • James D, Varga A, Croft H, Rast H, Thompson D, Hayes S (2006) Molecular characterization, phylogenetic relationships and specific detection of Peach mosaic virus. Phytopathology 96: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Jan F-J, Yeh S-D (1995) Purification, in situ location, comparative serological properties of Passionfruit woodiness virus-encoded amorphous inclusion protein and two other proteins. Phytopathology 85: 64–71.

    Article  CAS  Google Scholar 

  • Janczur KL, Nakhla MK, Charkowski AO (2006) Multiplex detection of Potato virus S, Potato virus X and Potato virus Y by non-radioactive nucleic acid spot hybridization in potato tissue culture plantlets. Amer J Potato Res 83: 495–501.

    Article  CAS  Google Scholar 

  • Jaspars EM, Bos L (1980) Alfalfa mosaic virus. Description of Plant Viruses, No. 229. Commonwealth Mycological Institute/Assoc. Appl. Biol, Kew, England.

    Google Scholar 

  • Jelkmann W, Kein-Konrad R (1997) Immunocapture polymerase chain reaction and plate-trapped ELISA for the detection of Apple stem pitting virus. J Phytopathol 145: 499–503.

    Article  Google Scholar 

  • Jiang JX, Chen ZX, Zhou XP (2003) Production of a monoclonal antibody to Sugarcane mosaic virus and its application for virus detection in China. J Phytopathol 151: 361–364.

    Article  CAS  Google Scholar 

  • Jones RAC, Dwyer GI (2007) Detection of Sweet potato chlorotic fleck virus and Sweet potato feathery mottle virus-strain O in Australia. Austr Plant Pathol 36: 591–594.

    Article  Google Scholar 

  • Jones RAC, Proudlove W (1991) Further studies on Cucumber mosaic virus infection of narrow leafed lupin (Lupinus angustifolius) seedborne infection, aphid transmission – spread and effects on grain yield. Ann Appl Biol 118: 319–329.

    Article  Google Scholar 

  • Jones D, Farreyrol K, Clover GRG, Pearson MN ( 2007) Development of a generic PCR detection method for tobraviruses. Austr Plant Pathol 37: 132–136.

    Article  Google Scholar 

  • Jonson G, Park J-C, Kim Y-K, Kim M-J, Lee M-J, Hyun J-N, Kim J-G (2007) Direct stem blot immunoassay (DSBIA): a rapid, reliable and economical detection technique suitable for testing large number of barley materials for field monitoring and resistance screening to Barley mild mosaic virus and Barley yellow mosaic virus. Plant Pathol J 23: 260–265.

    Google Scholar 

  • Kamenova I, Adkins S (2004) Comparison of detection methods for a novel tobamovirus from Florida hibiscus. Plant Dis 88: 34–40.

    Article  CAS  Google Scholar 

  • Kamenova I, Tsvetkov I, Atanassov A (2007) Virus testing of certified grapevine planting material in Bulgaria. Biotechnol Biotechnol 21: 66–68.

    Google Scholar 

  • Kaneko Y, Inukai T, Suehiro N, Natsuaki T, Masuta C (2004) Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by Turnip mosaic virus infection in Arabidopsis thaliana. Theor Appl Gene 110: 33–40.

    Article  CAS  Google Scholar 

  • Kaparia-Isaia TH, Kyriakou A, Ioannides I, Papayiannis L, Minas GT (2007) Sanitation of local citrus varieties and/or clones in Cyprus. Acta Hortic 741, 301–306.

    Google Scholar 

  • Keim-Konrad R, Jelkmann W (1996) Genome analysis of the 3′-terminal part of the little cherry disease associated dsRNA reveals a monopartite clostero-like virus. Arch Virol 141: 1437–1451.

    Article  CAS  PubMed  Google Scholar 

  • Kekarainen T, Savilahti H, Valkonen JPT (2002) Functional genomics on Potato virus A: virus genome-wide map of sites essential for virus propagation. Genome Res 12: 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Keller JR (1953) Investigations on Chrysanthemum stunt virus and Chrysanthemum virus. Q Cornell Univ Agric Exp Sta Mem 324, 40 pp.

    Google Scholar 

  • Khan SA, Hoque MI, Sarker RH, Muehlbach H-P (2003) Detection of important plant viruses in in vitro regenerated potato plants by double antibody sandwich method of ELISA. Plant Tissue Cult 13: 21–29.

    Google Scholar 

  • Kim YH, Kim OS, Roh JH, Moon JK, Sohn SI, Lee SC, Lee JY (2004) Identification of Soybean mosaic virus strains by RT-PCR/RFLP analysis of cylindrical inclusion coding region. Plant Dis 88: 641–644.

    Article  CAS  Google Scholar 

  • Kim J-H, Choi G-S, Kim J-S, Lee S-H, Choi JK, Ryu KH (2006) Development of single-tube multiplex immunocapture RT-PCR assay for simultaneous detection of two pepper tobamoviruses. Plant Pathol J 22: 164–167.

    Google Scholar 

  • Klein RE, Wyatt SD, Keiser WJ, Mink GK (1992) Comparative immunoassays of Bean common mosaic virus in individual bean (Phaeolus vulgaris) seed and bulked bean seed samples. Plant Dis 76: 57–59.

    Article  Google Scholar 

  • Koenig R, Lüddecke P, Haeberlé AM (1995) Detection of Beet necrotic yellow vein virus strains, variants and mixed infections by examining single-strand conformation polymorphism of immunocapture RT-PCR products. J Gen Virol 76: 2051–2055.

    Article  CAS  PubMed  Google Scholar 

  • Koganezawa H, Yang X, Zhu SF, Hashimoto J, Hadidi A (2003) Apple scar skin viroid in apple. In: Hadidi A, Flores R, Randles JW, Semancik JS (ed), Viroids. CSIRO Publishing, Collingwood, Australia, pp. 137–141.

    Google Scholar 

  • Kohler G, Milstein C (1975) Continuous culture of fused cells secreting antibodies of predefined specificity. Nature 256: 495–497.

    Article  CAS  PubMed  Google Scholar 

  • Kohnen PD, Dougherty WG, Hampton RO (1992) Detection of pea seedborne potyvirus by sequence-specific enzyme amplification. J Virol Meth 37: 253–258.

    Article  CAS  Google Scholar 

  • Kokkinos CD, Clark CA (2006) Real-time PCR assays for detection and quantification of sweet potato viruses. Plant Dis 90: 783–788.

    Article  CAS  Google Scholar 

  • Kokko HI, Kivinea M, Karenlampi SO (1996) Single-step immunocapture RT-PCR in the detection of Raspberry bushy dwarf virus. Biotech 18, 47–50.

    Google Scholar 

  • Köklü G (1999) Production of antisera to Grapevine leaf roll-associated virus 2 and evaluation of the serological diagnosis of infected plants. J Turk Phytopathol 28: 119–131.

    Google Scholar 

  • Kölber M, Németh M, Krizbal L, Szemes M, Kiss-Toth E, Dorgal L, Kálmán M (1998) Detectability of Prunus necrotic ringspot and Plum pox viruses by RT-PCR, multiplex RT-PCR, ELISA and indexing on woody indicators. Acta Hortic 472, 243 –247.

    Google Scholar 

  • Komínek P, Komínková-Bryxiová M, Jandurová OM, Holleinova V (2008) An RNA probe for the detection of Grapevine virus A. J Phytopathol 156: 762–764.

    Article  Google Scholar 

  • Korimbocus J, Preston S, Danks C, Barker I, Coates D, Boonham N (2002) Production of monoclonal antibodies to Sugarcane yellow leaf virus using recombinant readthrough protein. J Phytopathol 150: 488–494.

    Article  CAS  Google Scholar 

  • Kox LF, Boxman ILA, Jansen CCC, Roenhorst JW (2005) Reliability of nucleic acid amplification techniques: modified target RNA as exogenous internal standard for a real-time RT-PCR for Potato spindle tuber viroid. EPPO Bull 35: 117–124.

    Article  Google Scholar 

  • Kryczynski S, Syndel MS, Stawiszynska A, Piskorek W (1992) The rate and the way of Prunus necrotic ringspot virus spread in sour cherry orchard and in the rootstock production. Acta Hortic 309, 105–110.

    Google Scholar 

  • Kubo N, Nakazono-Nagaoka E, Hagiwara K, Kajihara H, Takeuchi S, Matsuo K, Ichiki TU (2005) New severe strains of Melon necrotic spot virus: symptomatology and sequencing. Plant Pathol 54: 615–620.

    Article  CAS  Google Scholar 

  • Kulshrestha S, Verma N, Hallan V, Raikhy G, Kumar Singh M, Ram R, Zaidi AA (2005) Detection and identification of Prunus necrotic ringspot virus in Pelargonium. Austr Plant Pathol 34: 599–601.

    Article  Google Scholar 

  • Kumari SG, Makkouk KM, Katul L, Vetten HJ (2001) Polyclonal antibodies to the bacterially expressed coat protein of Faba bean necrotic yellows virus. J Phytopathol 149: 543–550.

    Article  CAS  Google Scholar 

  • Kuniyuki H, Betti JA, Yuki VA (1998) Detection of the virus and virus-like diseases of grapevine through leaf grafting. Summa Phytopathol 24: 105–107.

    Google Scholar 

  • Kuntze L, Bauer E, Forough-Wehr B (2000) An improved method for inoculation and detection of BaYMV-2 in winter barley. J Plant Dis Protect 107: 310–317.

    Google Scholar 

  • Kwon MJ, Hwang SL, Lee SJ, Lee DH, Lee JY (2002) Detection and distribution of Apple scar skin viroid-Korean strain (ASSVd-K) from apples cultivated in Korea. Plant Pathol J 18: 342–344.

    Google Scholar 

  • La Notte P, Minafra A, Saldarelli P (1997) A spot-PCR technique for the detection of phloem-limited grapevines viruses. J Virol Meth 66: 103–108.

    Article  Google Scholar 

  • Lakshmanan DK, Hiruki C, Wu XN, Leung WC (1986) Use of the 32P RNA probes for the dot hybridization detection of Potato spindle tuber viroid. J Virol Meth 14: 309–319.

    Article  Google Scholar 

  • Lange L (1986) The practical application of new developments in test procedures for the detection of viruses in seed. Dev Appl Biol 1: 269–281.

    Google Scholar 

  • Lange L, Heide M (1986) Dot immunobinding (DIA) for detection of virus in seed. Canad J Plant Pathol 8: 373–379.

    Article  Google Scholar 

  • Lange L, Jormanlor A, Heide M (1991) Testing seeds for viruses by dot immunobinding (DIB) directly in paper. Tidks Planteaul 93: 93–96.

    Google Scholar 

  • Langenberg WG (1974) Leaf dip serology for the determination of strain relationship of elongated plant viruses. Phytopathology 64: 128–131.

    Article  Google Scholar 

  • Larsen RC, Kaiser WJ, Wyatt SD, Buxton-Druffel KL, Berger PH (2003) Characterization of a new potyvirus naturally infecting chickpea. Plant Dis 87: 1366–1371.

    Article  CAS  Google Scholar 

  • Latham LJ, Jones RAC (1997) Occurrence of tomato spotted wilt tospovirus in native flora, weeds and horticultural crops. Austr J Agric Res 48: 359–369.

    Article  Google Scholar 

  • Lebas BSM, Ochoa-Corona FM, Elliott DR, Tang Z, Alexander BJR (2005) Development of an RT-PCR for High Plains virus indexing scheme in New Zealand post-entry quarantine. Plant Dis 89: 1103–1108.

    Article  CAS  Google Scholar 

  • Lee BY, Lin HR, Choi JY, Ryu KH (2004) Development of molecular detection of three species of seed-transmissible viruses useful for plant quarantine. Plant Pathol 20: 302–307.

    Google Scholar 

  • Lee S-C, Chang Y-C (2006) Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathol Bull 15: 187–196.

    CAS  Google Scholar 

  • Letschert B, Adam G, Lesemann DE, Willingmann P, Heinze C (2002) Detection and differentiation of serologically cross-reacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. J Virol Meth 106: 1–10.

    Article  CAS  Google Scholar 

  • Levy L, Hadidi A, Kolber M, Tokes G, Nemeth M (1995) 3′ non-coding region of RT-PCR detection and molecular hybridization of Plum pox virus in anthers of infected stone fruit. Acta Hortic 386: 331–339.

    CAS  Google Scholar 

  • Li Y, Wei C, Tien P, Pan N, Chen Z (1996) Immunodetection of beet necrotic yellow vein RNA3-encoded protein in different host plants and tissues. Acta Virol 40: 67–72.

    CAS  PubMed  Google Scholar 

  • Li SF, Hataya T, Furuya K, Horita H, Sano T, Shikata E (1997) Occurrence of chrysanthemum stunt disease in Kokkaido and detection of Chrysanthemum stunt viroid by electrophoresis and hybridization. Ann Rep Soc Plant Protect North Japan 48, 113–117.

    CAS  Google Scholar 

  • Li R, Salih S, Hurtt S (2004) Detection of geminiviruses in sweet potato by polymerase chain reaction. Plant Dis 88: 1347–1351.

    Article  CAS  Google Scholar 

  • Lin S-S, Hou RF, Yeh S-D (2000a) Heteroduplex mobility and sequence analyses for assessment of variability of Zucchini yellow mosaic virus. Phytopathology 90: 228–235.

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Rundell PA, Xie L, Powell CA (2000b) In situ immunoassay for detection of Citrus tristeza virus. Plant Dis 84: 937–940.

    Article  Google Scholar 

  • Lin YJ, Rundell PA, Powell CA (2002) In situ immunoassay (ISIA) of field grapefruits inoculated with mild isolates of Citrus tristeza virus indicates mixed infection with severe isolates. Plant Dis 86: 458–461.

    Article  CAS  Google Scholar 

  • Lin YH, Chen TC, Hsu HT, Liu FL, Chu FH, Chen CC, Lin YZ, Yeh SD (2005) Serological comparison and molecular characterization of Calla lily chlorotic spot virus as a new Tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology 95: 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Rundell PA, Xie L, Powell CA (2006) Pre-reaction of Citrus tristeza virus (CTV)-specific antibodies and labeled secondary antibodies increases speed of direct tissue immunoassay for CTV. Plant Dis 90: 675–679.

    Article  Google Scholar 

  • Lister RM (1978) Application of the enzyme-linked immunosorbent assay for the detection of viruses in soybean seed and plants. Phytopathology 68: 1393–1400.

    Article  Google Scholar 

  • Lister RM, Caroll TW, Zaske SK (1981) Sensitive serological detection of Barley stripe mosaic virus in barley seed. Plant Dis 65: 809–814.

    Article  Google Scholar 

  • Liveratos IC, Avgelis AD, Coutts RHA (1999) Molecular characterization of the Cucurbit yellow stunting disorder virus coat protein gene. Phytopathology 89: 1050–1055.

    Article  Google Scholar 

  • Loconsole G, Castellano MA, Dell’Orco M, Bosica D, Savino V (2006) Serological detection of Citrus psorosis virus using a polyclonal antiserum to recombinant virus coat protein. J Plant Pathol 88: 171–177.

    CAS  Google Scholar 

  • Loebenstein G, Akad F, Filatov V, Sadvakasova G, Manadilova A, Bakelman H, Teverovsky E, Lachmann O, David A (1997) Improved detection of potato leafroll luteovirus in leaves and tubers with a digoxigenin labled cRNA probe. Plant Dis 81: 489–491.

    Article  Google Scholar 

  • Lolic B, Afechtal M, Matic S, Myrta A, Di Serio F (2007) Detection by tissue-printing of pome fruit viroids and characterization of Pear blister canker viroid in Bosnia and Herzegovina. J Plant Pathol 89: 369–373.

    CAS  Google Scholar 

  • Lorenzen JH, Piche LM, Gumestad NC, Meacham T, Shiel P (2006) A multiplex PCR assay to characterize Potato virus Y isolates and identify strain mixtures. Plant Dis 90: 935–940.

    Article  CAS  Google Scholar 

  • Lotrakul P, Valverde RA, Clark CA, Sim J, de la Torre R (1998) Detection of a geminivirus infecting sweet potato in the United States. Plant Dis 82: 1253–1257.

    Article  Google Scholar 

  • Lumia V, Pasquini G, Barba M (2003) Sensitive detection of Artichoke latent virus in Globe artichoke field samples by one-step RT-PCR or tissue-imprint hybridization. J Phytopathol 151: 477–479.

    Article  CAS  Google Scholar 

  • Ma H, Zhao X-L, Wong X-H, Dan C, Abing X, Nong H-C (1997) The detection of Barley yellow mosaic virus with monoclonal antibody to BaYMV. Acta Phytophyl Sinica 24: 309–312.

    Google Scholar 

  • Ma B-G, Niu J-X, Morley-Bunker M, Pan L-Z, Zhang H-P, Zhang L-X (2008) Detection of three pear viruses by multiplex RT-PCR assays with co-amplification of an internal control. Austr Plant Pathol 37: 117–132.

    Article  CAS  Google Scholar 

  • MacKenzie DJ, Mclean MA, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis 81: 222–226.

    Article  CAS  Google Scholar 

  • Maeso D, Pagani C, Mirabelle I, Conci VC (1997) Studies on viruses affecting garlic in Uruguay. Acta Hortic No. 433, 617–622.

    Google Scholar 

  • Magome H, Yoshikawa N, Takashashi T (1999) Single-strand conformation polymorphism analysis of apple stem grooving capillovirus sequence variants. Phytopathology 89: 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Rush CM (1999) Evidence of cross-protection between Beet soilborne mosaic virus and Beet necrotic yellow vein virus in sugar beet. Plant Dis 83: 521–526.

    Article  Google Scholar 

  • Mahmoud SYM, Abo-El Maaty SA, El-Borollosy AM, Abdel-Ghaffar MH (2007) Identification of onion yellow dwarf potyvirus as one of the major viruses infecting garlic in Egypt. Amer Eur J Agric Environ Sci 2: 746–755.

    Google Scholar 

  • Majumder S, Baranwal VK, Joshi S (2008) Simultaneous detection of Onion yellow dwarf virus and Shallot latent virus in infected leaves and cloves of garlic by duplex RT-PCR. J Plant Pathol 90: 371–374.

    CAS  Google Scholar 

  • Makkouk KM, Bos L, Azam OI, Katul L, Rizkallah A (1987) Broad bean stain virus: identification, detectability with ELISA in faba bean leaves and seeds, occurrence in West Asia and North Africa and possible wild hosts. Nether J Plant Pathol 93: 97–106.

    Article  Google Scholar 

  • Makkouk KM, Hsu HT, Kumari SG (1993) Detection of three plant viruses by blot and tissue blot immunoassays using chemiluminescent and chromogenic substrates. J Phytopathol 139: 97–112.

    Article  CAS  Google Scholar 

  • Malfitano M, Barone M, Duran-Vila N, Alioto D (2005) Indexing of viroids in citrus orchards of Campania, southern Italy. J Plant Pathol 87: 115–121.

    Google Scholar 

  • Maliogka VI, Dovas CI, Efthimiou K, Katis NI (2004) Detection and differentiation of Comoviridae species using a semi-nested RT-PCR and a phylogenetic analysis based on the polymerase protein. J Phytopathol 152: 404–409.

    Article  CAS  Google Scholar 

  • Maliogka VI, Dovas CI, Lesemann DE, Winter S, Katis NI (2006) Molecular identification, reverse transcription-polymerase chain reaction detection, host reactions and specific cytopathology of Artichoke yellow ringspot virus infecting onion crops. Phytopathology 96: 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Maliogka VI, Dovas CI, Katis NI (2008) Generic and species-specific detection of viruses belonging to an evolutionarily distinct lineage within the Ampelovirus genus. J Virol Meth 154: 41–47.

    Article  CAS  Google Scholar 

  • Maliogka VI, Dovas CI, Lotos L, Efthimiou K, Katis NI (2009) Complete genome analysis and immunodetection of a member of a novel virus species belonging to the genus Ampelovirus. Arch Virol 154: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Manickam K (2000) Molecular detection of banana bunchy top nanavirus and production of disease-free banana plantlets. Doctoral Thesis, Tamil Nadu Agricultural University, Coimbatore, India.

    Google Scholar 

  • Mansky LM, Andrews Jr RE, Durand DP, Hill JH (1990) Plant virus location in leaf tissue by press blotting. Plant Mol Biol Rep 8: 13–17.

    Article  Google Scholar 

  • Marie-Jeanne V, Ioos R, Peyre J, Alliot B, Signoret P (2000) Differentiation of Poaceae potyviruses by reverse transcription-polymerase chain reaction and restriction analysis. J Phytopathol 148: 141–151.

    Article  CAS  Google Scholar 

  • Marinho VLA, Daniels J, Kummert J, Chandelier A, Lepoivre P (2003) RT-PCR-ELISA for detection of Apple stem grooving virus in apple trees. Fitopatol Brasil 28: 374–379.

    Google Scholar 

  • Martelli GP, Walter B (1998) Virus certification of grapevine. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant Virus Disease Control, APD Press, St. Paul, MN, USA, pp. 261–276.

    Google Scholar 

  • Martin RR, James D, Lévesque CA (2000) Impacts of molecular diagnostic technologies on plant disease management. Ann Rev Phytopathol 38: 207–239.

    Article  CAS  Google Scholar 

  • Martin S, Alioto D, Milne RG, Guerri J, Moreno P (2002a) Detection of Citrus psorosis virus in field trees by direct tissue blot immunoassay in comparison with ELISA, symptomatology, biological indexing and cross-protection tests. Plant Pathol 51: 134–141.

    Article  CAS  Google Scholar 

  • Martin S, Milne RG, Alioto D, Guerri J, Moreno P (2002b) Psorosis-like symptoms induced by causes other than Citrus psorosis virus. 15th IOCV Conference 2002 – other viruses, pp. 197–204.

    Google Scholar 

  • Martin S, Alioto D, Milne RG, Garnsey SM, García ML, Grau O, Guerri J, Moreno P (2004) Detection of Citrus psorosis virus by ELISA, molecular hybridization, RT-PCR and immunosorbent electron microscopy and its association with citrus psorosis disease. Eur J Plant Pathol 110: 747–757.

    Article  CAS  Google Scholar 

  • Maruthi MN, Alan SN, Kader KA, Rekha AR, Cork A, Colvin J (2005) Nucleotide sequencing, whitefly transmission and screening tomato for resistance against two newly described begomoviruses in Bangladesh. Phytopathology 95: 1472–1481.

    Article  CAS  PubMed  Google Scholar 

  • Massart S, Brostaux Y, Barbarossa L, César V, Cieslinska M, Dutrecq O, Fonseca F, Guillem R, Lavina A, Olmos A, Steyer S, Wetzel T, Kummert J, Jijakli MH (2008) Interlaboratory evaluation of a duplex RT-PCR method using crude extracts for the simultaneous detection of Prune dwarf virus and Prunus necrotic ringspot virus. Eur J Plant Pathol 122: 539–547.

    Article  CAS  Google Scholar 

  • Mathews DM, Riley K, Dodds JA (1997) Comparison of detection methods for Citrus tristeza virus in field trees during months of nonoptimal titer. Plant Dis 81: 525–529.

    Article  Google Scholar 

  • Matic S, Sánchez-Navarro JA, Mandic B, Myrta A, Pallás V (2008) Tracking three ilarviruses in stone fruit trees throughout the year by ELISA and tissue-printing hybridization. J Plant Pathol 90: 137–141.

    Google Scholar 

  • Matic S, Minafra A, Bosica D, da Cunha ATP, Martelli GP (2009) Production of antibodies to Little cherry virus 1 coat protein by DNA prime and protein boost immunization. J Virol Meth 155: 72–76.

    Article  CAS  Google Scholar 

  • Matoušek J, Orctová L, Patzak J, Svoboda P, Ludviková I (2003) Molecular sampling of Hop stunt viroid (HSVd) from grapevines in hop production areas in Czech Republic and hop production. Plant Soil Environ 49: 168–175.

    Google Scholar 

  • Matoušek J, Orctová L, Steger G, Riesner D (2004) Biolistic inoculation of plants with viroid nucleic acids. J Virol Meth 122: 153–164.

    Article  CAS  Google Scholar 

  • Matoušek J, Orctová L, Škopek, Pešina K, Steger G (2008) Elimination of Hop latent viroid upon developmental activation of pollen nucleases. Bio Chem 389: 905–918.

    Article  CAS  Google Scholar 

  • Maude RB (1996) Seedborne Diseases and Their Control-Principles and Practice. CAB International, Wallingford, UK.

    Google Scholar 

  • Maury Y, Duby C, Bossennec JM, Boudazin G (1985) Group analysis using ELISA: determination of the level of transmission of Soybean mosaic virus in soybean seed. Agronomie 5: 405–415.

    Article  Google Scholar 

  • Maury-Chovelon V (1984) Recherches sur la Detection du Virus du la Mosaique de la Laitue par le Mithode. Doctoral Thesis, Montpellier, France.

    Google Scholar 

  • Mayo MA, Brunt AA (2007) Plant virus taxonomy. In: Khan JA, Dijkstra J (ed), Handbook of Plant Virology. The Haworth Press, New York, pp. 11–20.

    Google Scholar 

  • McInnes JL, Symons RH (1989) Nucleic acid probes in the diagnosis of plant viruses and viroids. In: Symons RH (ed), Nucleic Acid Probes. CRC, Boca Raton, FL.

    Google Scholar 

  • Medina C, Matus JT, Zúñiga M, San-Martin C, Arce-Johnson P (2006a) Occurrence and distribution of viruses in commercial plantings of Rubus, Ribes and Vaccinium species in Chile. Cien Inv Agr 33: 19–24.

    Google Scholar 

  • Medina V, Pinner MS, Bedford ID, Achon MA, Gemeno C, Markham PG (2006b) Immunolocalization of Tomato leafcurl Sardinia virus in natural host plants and its vector Bemisia tabaci. J Plant Pathol 88: 299–308.

    CAS  Google Scholar 

  • Mekuria G, Ramesh SA, Alberts C, Bertozzi T, Wirthensohn M, Collins G, Sedgley M (2003) Comparison of ELISA and RT-PCR for detection of Prunus necrotic ringspot virus and Prune dwarf virus in almond. J Virol Meth 114: 65–69.

    Article  CAS  Google Scholar 

  • Melton DA, Krieg PA, Rebaghiati MR, Maniatus T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA hybridization probes from plasmids containing bacteriophage SP6 promoter. Nucleic Acids Res 12: 7033–7056.

    Article  Google Scholar 

  • Melzer MJ, Karasev AV, Sether DM, Hu JS (2001) Nucleotide sequence, genome organization and phylogenetic analysis of Pineapple mealybug wilt-associated virus 2. J Gen Virol 82: 1–7.

    CAS  PubMed  Google Scholar 

  • Meng B-Z, Johnson R, Peressini S, Frosline PL, Gonsalves D (1999) Rupestris stem pitting-associated virus consistently detected in grapevines that are infected with rupestris stem pitting. Eur J Plant Pathol 105: 191–199.

    Article  CAS  Google Scholar 

  • Meng J, Gu Q-S, Lin S-M, Peng B, Liu L-F, Tian Y-P, Li L (2007) Dot blot hybridization for detection of five cucurbit viruses by digoxingenin-labeled cDNA probes. Agric Sci China 6: 1450–1455.

    CAS  Google Scholar 

  • Merits A, Guo D, Saarma M (1998) VPg, coat protein and five nonstructural proteins of potato A potyvirus bind RNA in a sequence specific manner. J Gen Virol 79: 3123 –3127.

    CAS  PubMed  Google Scholar 

  • Merits A, Rajamäki ML, Lindholm P, Runeberg-Roos P, Kekarainen T, Puustinen P, Mäkeläinen K, Valkonen JPT, Saarma M (2002) Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol 83: 1211–1221.

    CAS  PubMed  Google Scholar 

  • Meunier A, Schmit J-F, Stas A, Kutluk N, Baragard C (2003) Multiplex reverse transcription-PCR for simultaneous detection of Beet necrotic yellow vein virus, Beet soilborne virus and Beet virus Q and their vector Polymyxa betae Keskin on sugar beet. Appl Environ Microbiol 69: 2356–2360.

    Article  CAS  PubMed  Google Scholar 

  • Michelutti R, Myrta A, Pallás V (2005) A preliminary account on the sanitary status of stone fruits at the Clonal Genebank in Harrow, Canada. Phytopathol Mediterr 44: 71–74.

    Google Scholar 

  • Milne RG (1972) Electron microscopy of viruses. In: Kado CI, Agrawal HO (ed), Principles and Techniques in Plant Virology. Van Nostrand Reinhold Co, NY, pp. 79–128.

    Google Scholar 

  • Milne RG (1984) Electron microscopy for the identification of plant viruses in vitro preparations. Meth Virol 7: 187.

    Google Scholar 

  • Milne RG, Lesemann DE (1984) Immunosorbent electron microscopy in plant virus studies. Meth Virol 7: 85–101.

    Google Scholar 

  • Minafra A, Hadidi A, Saldarelli P (1993) Sensitive immunocapture and polymerase reverse transcription-polymerase chain reaction for the detection of Grapevine leaf roll-associated virus III and Grapevine virus B. Proc 11th Mtg Internat Council Study of Viruses and Virus Diseases of Grapevine (ICVG), Abst. 137.

    Google Scholar 

  • Minafra A, Casati P, Elico V, Rowhani A, Saldarelli P, Savino V, Martelli GP (2000) Serological detection of Grapevine rupestris stem pitting-associated virus (GRSPaV) by a polyclonal serum to recombinant coat protein. Vitis 39: 115–118.

    CAS  Google Scholar 

  • Mink GI, Aichele MD (1984) Detection of Prunus necrotic ringspot and prune dwarf viruses in Prunus seeds and seedlings by enzyme-linked immunosorbent assay. Plant Dis 68: 378–381.

    Google Scholar 

  • Misbeh S, Al-Musa A, Anfoka G, Salem N (2007) Molecular characterization of Grapevine virus A isolates from Jordan. Phytopathol Mediterr 46: 195–200.

    CAS  Google Scholar 

  • Mizenina OA, Borisova OA, Novikov VK, Ertushenko OA, Baykov AA, Atabekov JG (1991) Inorganic pyrophosphatase from Escherichia coli as a label for the detection of plant viruses. J Phytopathol 133: 278–288.

    Article  CAS  Google Scholar 

  • Monis J (2000) Development of monoclonal antibodies reactive to a new Grapevine leaf roll-associated closterovirus. Plant Dis 84: 858–862.

    Article  CAS  Google Scholar 

  • Monis J, Bestwick RK (1997) Serological detection of grapevine associated closteroviruses in infected grapevine cultivars. Plant Dis 81: 802–808.

    Article  Google Scholar 

  • Moon JS, Allen RG, Dornier LL, Hewings AD (2000) Molecular and biological characterization of a trackable Illinois isolate of Barley dwarf virus-PAV. Plant Dis 84: 483–486.

    Article  CAS  Google Scholar 

  • Morais S, Marco-Moles R, Puchades R, Maquieira A (2006) DNA macroarraying on compact disc surfaces: Application to the analysis of single nucleotide polymorphisms in Plum pox virus. Chem Commun, DOI: 10.1039/b.600049e

    Google Scholar 

  • Morris TJ, Wright NS (1975) Detection of polyacrylamide gel of a diagnostic nucleic acid from tissue infected with Potato spindle tuber viroid. Amer Potato J 52: 57–63.

    Article  CAS  Google Scholar 

  • Mumford RA, Walsh K, Barker I, Boonham N (2000) Detection of Potato moptop virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse transcription-polymerase chain reaction assay. Phytopathology 90: 448–453.

    Article  CAS  PubMed  Google Scholar 

  • Mumford R, Skelton A, Metcalfe E, Walsh K, Boonham N (2004) Reliable detection of Barley yellow and mild mosaic viruses using real-time PCR (TaqMan®). J Virol Meth 117: 153–159.

    Article  CAS  Google Scholar 

  • Myrta A, Al-Rowhani M, Savino V (2005) Presence of a recombinant isolates of Plum pox virus in Apulia. J Plant Pathol 87: 127–130.

    CAS  Google Scholar 

  • Nakahara K, Hataya T, Kimura I, Shikata E (1997) Reactions of potato cultivars in Japan of Potato spindle tuber viroid and its gene diagnosis. Ann Rep Soc Plant Protect North Japan 48, 69–74.

    CAS  Google Scholar 

  • Nakaune R, Nakano M (2006) Efficient methods for sample processing and cDNA synthesis by RT-PCR for the detection of grapevine viruses and viroids. J Virol Meth 134: 244–248.

    Article  CAS  Google Scholar 

  • Narayanasamy P (2001) Plant Pathogen Detection and Disease Diagnosis, Second edition. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Narayanasamy P (2005) Immunology in Plant Health and Its Impact on Food Safety. The Haworth Press, Inc., New York.

    Google Scholar 

  • Narayanasamy P (2008) Molecular Biology in Plant Pathogenesis and Disease Management, Vols 1, 2 and 3. Springer, Hiedelberg.

    Google Scholar 

  • Narayanasamy P, Doraiswamy S (2003) Plant Viruses and Viral Diseases. New Century Book House, Chennai, India.

    Google Scholar 

  • Narayanasamy P, Ganapathy T (1986) Characterization of antiviral principles effective against Tomato spotted wilt virus on groundnut. Proceedings of the 14th Internat Cong Microbiol, Manchester, England.

    Google Scholar 

  • Narváez G, Slimane Skander B, Ayllón MA, Rubio L, Guerri J, Moreno P (2000) A new procedure to differentiate Citrus tristeza virus isolate by hybridization with digoxigenin labeled cDNA probes. J Virol Meth 85: 83–92.

    Article  Google Scholar 

  • Nava AR, Patte CP, Hiebert E, Polston JE (2006) Detection and variability of begomoviruses in tomato from the Andean states of Venezuela. Plant Dis 90: 61–66.

    Article  CAS  Google Scholar 

  • Navas-Castillo J, Diaz JA, Sanchez Campos S, Moriones E (1998) Improvement of the print-capture polymerase chain reaction procedure for efficient amplification of DNA virus genomes from plants and insect vectors. J Virol Meth 75: 195–198.

    Article  CAS  Google Scholar 

  • Nemchinov L, Hadidi A (1998) Specific oligonucleotide primers for the direct detection of plum pox potyvirus-cherry subgroup. J Virol Meth 70: 231–234.

    Article  CAS  Google Scholar 

  • Nesi B, Trinchello D, Lazzereschi S, Grassotti A (2009) Production of Lily symptomless virus-free plants by shoot meristem tip culture and in vitro thermotherapy. HortScience 44: 217–219.

    Google Scholar 

  • Neustroeva NP, Dzantier BB, Markaryan AN, Bobkova AF, Igorov AM, Atabekov IG (1989) Enzyme-immunoassay of Potato virus X using antibodies labeled by ß-galactosidase of Escherichia coli. Brologiya 1: 115–118.

    Google Scholar 

  • Nie X (2005) Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Dis 89: 605–610.

    Article  CAS  Google Scholar 

  • Nie X, Singh RP (2002) A new approach for the simultaneous differentiation of biological and geographical strains of Potato virus Y by uniplex and multiplex RT-PCR. J Virol Meth 104: 41–54.

    Article  CAS  Google Scholar 

  • Nie X, Singh RP (2003) Specific differentiation of recombinant of PVYN:O and PVYNTN isolates by multiplex RT-PCR. J Virol Meth 113: 69–77.

    Article  CAS  Google Scholar 

  • Nielson SL, Husted K, Ramussen HN (1998) Detection of Potato virus Y in dormant tubers by a PCR method DIAPOPS (detection of immobilized amplified product in a one phase system). DJF Rapport Markburg 3, 73–80.

    Google Scholar 

  • Nikolaeva OV, Karasev AV, Powell CA, Gumpf DJ, Garnsey SM, Lee RF (1996) Mapping of epitopes for Citrus tristeza virus-specific monoclonal antibodies using bacterially expressed coat protein fragments. Phytopathology 86: 974–979.

    Article  CAS  Google Scholar 

  • Nikolaeva OV, Karasev AV, Garnsey SM, Lee RF (1998) Serological differentiation of the Citrus tristeza virus isolates causing stem pitting in sweet orange. Plant Dis 68: 971–975.

    Google Scholar 

  • Nolan PA, Campbell RN (1984) Squash mosaic virus detection in individual seeds and seed lots of cucurbits by enzyme-linked immunosorbent assay. Plant Dis 68: 971–985.

    Google Scholar 

  • Nolasco G, Sequeira Z, Bonacalza B, Mendes C, Torres V, Sanchez F, Urgoiti B, Ponzi F, Febres VJ, Cevik B, Lee RF, Niblett CL (1997) Sensitive CTV diagnosis using immunocapture-reverse transcription-polymerase chain reaction and an exonuclease fluorescent probe assay. Fruits (Paris) 52: 391–396.

    CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: e 63.

    Article  CAS  Google Scholar 

  • Nümi Y, Gondaira T, Kutsuwada Y, Tsuji H (1999) Detection by ELISA and DIBA tests of Lily symptomless virus (LSV), Tulip-breaking virus-lily (TBV-L) and Cucumber mosaic virus (CMV). J Japanese Soc Hortic Sci 68: 176–183.

    Article  Google Scholar 

  • Odu BO, Hughes J d’A, Shoyinka SA, Dongo LN (1999) Isolation, characterization and identification of a potyvirus from Dioscorea alata L (water yam) in Nigeria. Ann Appl Biol 134: 65–71.

    Article  Google Scholar 

  • Oliver JE, Freer J, Andersen RL, Cox KD, Robinson TL, Fuchs M (2009) Genetic diversity of Prunus necrotic ringspot virus isolates within a cherry orchard in New York. Plant Dis 93: 599–606.

    Article  CAS  Google Scholar 

  • Olmos A, Dasi MA, Candresse T, Cambra M (1996) Print-capture PCR: a simple and highly sensitive method for the detection of Plum pox virus (PPV) in plant tissues. Nucleic Acids Res 24: 2192–2193.

    Article  CAS  PubMed  Google Scholar 

  • Olmos A, Cambra M, Dasi MA, Candresse T, Esteban O Gorris MT, Asensio M (1997) Simultaneous detection and typing of Plum pox virus (PPV) isolates by hemi-nested PCR and PCR-ELISA. J Virol Meth 68: 127–137.

    Article  CAS  Google Scholar 

  • Orecchia M, Nölke G, Saldarelli P, Dell’Orco M, Uhde-Holzem K, Sack M, Martelli G, Fischer R, Schillberg S (2008) Generation and characterization of a recombinant antibody fragment that binds to the coat protein of Grapevine leaf roll-associated virus 3. Arch Virol, DOI: 10.1007/s00705-008.0100-3.

    Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879.

    Article  CAS  PubMed  Google Scholar 

  • Osman F, Leutenegger C, Golino D, Rowhani A (2007) Real-time RT-PCR (TaqMan®) assays for the detection of Grapevine leaf roll-associated viruses 1–5 and 9. J Virol Meth 141: 22–29.

    Article  CAS  Google Scholar 

  • Owens RA, Diener TO (1981) Sensitive and rapid diagnosis of Potato spindle tuber viroid disease by nucleic acid hybridization. Science 213: 670–672.

    Article  CAS  PubMed  Google Scholar 

  • Özdemir S, Kaya A (2008) Determination of viruses in imported fruit propagation materials. Acta Hortic 781, 143–146.

    Google Scholar 

  • Öztürk S, Cirakolu B (2003) Production of a monoclonal antibody specific for Citrus tristeza virus. Food Agric Immunol 15: 65–73.

    Article  CAS  Google Scholar 

  • Paduch-Cichal E, Welnicki M, Slowinski A (1998) Detection of Apple scar skin viroid group in different parts of apple trees by dot blot test. Phytopathol Polonica 15, 33–40.

    Google Scholar 

  • Pal N, Moon JS, Sandhu J, Dornier LL, D’Arcy CJ (2000) Production of Barley yellow dwarf virus antisera by DNA immunization. Canad J Plant Pathol 22: 410–415.

    Article  CAS  Google Scholar 

  • Palacio-Bielsa A, Foissac X, Duran-Villa N (1999) Indexing citrus viroids by imprint hybridization. Eur J Plant Pathol 105: 897–903.

    Article  CAS  Google Scholar 

  • Pan SQ, Ye XS, Kuć J (1991) A technique for detection of chitinase ß-1,3-glucanase and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocusing. Phytopathology 81: 970–974.

    Article  CAS  Google Scholar 

  • Pappu HR, Wyatt SD, Druffel KL (2005) Dahlia mosaic virus: molecular detection and distribution in dahlia in the United States. Hort Science 40: 697–699.

    Google Scholar 

  • Papyiannis LC, Kyriakou A, Kaparia-Isaia T (2007) Typing of Plum pox virus (PPV) strains in Cyprus. Austr Plant Dis Notes 2: 29–30.

    Article  Google Scholar 

  • Pares RD, Whitecross MI (1982) Gold-labeled antibody decoration (GLAD) in the diagnosis of plant viruses by immuno-electron microscopy. J Immunol Meth 51: 23.

    Article  CAS  Google Scholar 

  • Parida M, Posadas G, Inoue S, Hasebe F, Morita K (2004) Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42: 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Park M-R, Kim K-H (2004) RT-PCR detection of three non-reported fruit tree viruses useful for quarantine purpose in Korea. Plant Pathol J 20: 147–154.

    Google Scholar 

  • Park W-M, Shim K-B, Kim Su J, Ryu K-H (1998) Detection of Cymbidium mosaic virus and Odontoglossum ringspot virus by ELISA and RT-PCR from cultivated orchids in Korea. Kor J Plant Pathol 14: 130–135.

    Google Scholar 

  • Park J, Lee K, Kim E, Cho Y, Park Y (2001) Simultaneous detection and genotyping of Hepatitis C virus (HVC) by oligonucleotide microarray. Clin Chem 47: 329.

    Google Scholar 

  • Pasquini C, Simeone AM, Conte L, Barba M (1998) Detection of Plum pox virus in apricot seeds. Acta Virol 42: 260–263.

    CAS  PubMed  Google Scholar 

  • Paunovic S, Ruzic D, Vujovic T, Milenkovic S, Jerenovic D (2007) In vitro production of Plum pox virus-free plum by chemotherapy with ribivirin. Biotechnol Biotechnol EQ 21: 417–421.

    CAS  Google Scholar 

  • Peralta EL, Diaz C, Lima P, Martinez Y (1997) Diagnosis of Citrus tristeza virus utilizing the fluorogenic ultramicro ELISA system. Fitopatol 32: 112–115.

    Google Scholar 

  • Pérez EE, Weingartner DP, Hiebert E, McSorley R (2000) Tobacco rattle virus detection in potato tubers from northeast Florida by PCR and tissue blotting. Amer J Potato Res 77: 363–368.

    Article  Google Scholar 

  • Pesic Z, Hiruki C (1986) Differences in the incidence of Alfalfa mosaic virus in seed coat and embryo of alfalfa seed. Canad J Plant Pathol 8: 39–42.

    Article  Google Scholar 

  • Pesic Z, Hiruki C, Chen MH (1988) Detection of viral antigen by immunogold cytochemistry and in ovules, pollen and anthers of alfalfa infected with Alfalfa mosaic virus. Phytopathology 78: 1027–1032.

    Article  Google Scholar 

  • Phillips S, Briddon RW, Brunt AA, Hull R (1999) The partial characterization of a badnavirus infecting the Asiatic or water yam (Dioscorea alata). J Phytopathol 147: 265–269.

    CAS  Google Scholar 

  • Picó B, Sifres A, Nuez F (2005) Quantitative detection of Cucumber vein yellowing virus in susceptible and resistant plants using real-time PCR. J Virol Meth 128: 14–20.

    Article  CAS  Google Scholar 

  • Pleško IM, Marn MV, Širca S, Urek G (2009) Biological, serological and molecular characterization of Raspberry bushy dwarf virus from grapevine and its detection in the nematode Longidorus juvenilis. Eur J Plant Pathol 123: 261–268.

    Article  Google Scholar 

  • Podleckis EV, Hammond RW, Hurtt SS, Hadidi A (1993) Chemiluminescent detection of potato and prime print viroids by digoxigenin-labeled dot blot and tissue blot hybridization. J Virol Meth 43: 147–158.

    Article  CAS  Google Scholar 

  • Polak J, Kristek J (1988) Use of horseradish peroxidase labeled antibodies in ELISA for plant virus detection. J Phytopathol 122: 200–207.

    Article  Google Scholar 

  • Powell CA, Pelosi RR, Rundell PA, Stover E, Cohen M (1999) Cross-protection of grapefruit from decline-inducing isolates of Citrus tristeza virus. Plant Dis 83: 989–991.

    Article  Google Scholar 

  • Přibylová J, Špak J, Kubelková D (2002) Mixed infection of blackcurrant (Ribes nigrum L.) plants with Blackcurrant reversion-associated virus and rhabdovirus-like particles with symptoms of blackcurrant reversion disease. Acta Virol 46: 253–256.

    PubMed  Google Scholar 

  • Přibylová J, Špak J, Petrzik K, Kubelková D, Špaková V (2008) Sequence comparison and transmission of Blackcurrant reversion virus isolates in black, red and white currants with blackcurrant reversion disease and full blossom disease symptoms. Eur J Plant Pathol 121: 67–75.

    Article  CAS  Google Scholar 

  • Proudhikov D, Kirillova E, Cumakov K, Donlon J, Rezapkin G, Mirrzbekov A (2000) Analysis of mutations in oral Poliovirus vaccine by hybridization with generic, oligonucleotide minichips. Biologicals 28: 57–66.

    Article  Google Scholar 

  • Prüfer D, Kawchuk L, Monecke M, Nowok S, Fischer R, Rohde W (1999) Immunological analysis of potato leaf roll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA- binding protein derived via P1 processing. Nucleic Acids Res 27: 421–425.

    Article  PubMed  Google Scholar 

  • Quainoo AK, Wetten AC, Allainguillaume J (2008) Transmission of Cocoa swollen shoot virus by seeds. J Virol Meth 150: 45–49.

    Article  CAS  Google Scholar 

  • Querci M, Owens RA, Vargas C, Salazar LF (1995) Detection of Potato spindle tuber viroid in avocado growing in Peru. Plant Dis 79: 196–202.

    Article  CAS  Google Scholar 

  • Rajasulochana P, Dhamotharan R, Srinivasulu P (2008) Comparison of DAC-ELISA and dot blot ELISA for the detection of Cucumber mosaic and Banana streak viruses infecting banana. J Amer Sci 4: 18–27.

    Google Scholar 

  • Ramel ME, Gugerli P, Saugy R, Crausaz PH, Brugger JJ (1998) Virus control of apple, pear and quince by rapid graft-indexing in the greenhouse and isolation of the agents of the major virus diseases. Rev suisse Vitic Arboric Hortic 30: 13–21.

    Google Scholar 

  • Randles JW (1985) Coconut cadang-cadang viroid. In: Maramorosch K, McKelvey JJ (ed), Subviral Pathogens of Plants and Animals: Viroids and Prions. Academic, New York, pp. 39–74.

    Google Scholar 

  • Rantanen T, Lehtinen V, Kurppa A (1999) Development of an immunocapture RT-PCR for the detection of Potato moptop virus in potato tubers. Petria 9: 149–152.

    Google Scholar 

  • Rassaby L, Girard JC, Lemaire O, Costet L, Irey MS, Kodja H, Lockhart BEL, Rott P (2004) Spread of Sugarcane yellow leaf virus in sugarcane plants and fields on the island of Réunion. Plant Pathol 53: 117–125.

    Article  Google Scholar 

  • Raymer WB, O’Brien MJ (1962) Transmission of potato spindle tuber virus to tomato. Amer Potato J 39: 401–408.

    Article  Google Scholar 

  • Reddy DVR, Richins RD, Rajeshwari R, Iizuka N, Manohar SK, Shepherd RJ (1993) Peanunt chlorotic streak virus, a new caulimovirus infecting peanuts (Arachis hypogaea L.) in India. Phytopathology 83: 129–133.

    Google Scholar 

  • Rey MEC, D’Andrea E, Calvert-Evers J, Paximadis M, Boccardo G (1999) Evidence for a phytoreovirus associated with tobacco exhibiting leafcurl symptoms in South Africa. Phytopathology 89: 303–307.

    Article  CAS  PubMed  Google Scholar 

  • Roberts IM (1981) Notes for the course on immunoelectron microscopy of plant viruses. Association of Applied Biology Workshop Electron Microscopy Serology, John Innes Institute England.

    Google Scholar 

  • Roberts IM, Harrison BD (1979) Detection of Potato leaf roll and Potato moptop viruses by immunosorbent electron microscopy. Ann Appl Biol 93: 289–297.

    Article  Google Scholar 

  • Roberts CA, Dietzgen RG, Heelan LA, Maclean DJ (2000) Real-time RT-PCR fluorescent detection of Tomato spotted wilt virus. J Virol Meth 88: 1–8.

    Article  CAS  Google Scholar 

  • Romero-Durban J, Cambra M, Duran-Vila N (1995) A simple imprint-hybridization method for detection of viroids. J Virol Meth 55: 37–47.

    Article  CAS  Google Scholar 

  • Rosner A, Maslenin L (1999) Differentiation of PVYNTN by unique single-restriction cleavage of PCR products. Potato Res 42: 215–221.

    Article  CAS  Google Scholar 

  • Rosner A, Maslenin L, Spiegel S (1997) The use of short and long PCR products for improved detection of Prunus necrotic ringspot virus in woody plants. J Virol Meth 67: 135–141.

    Article  CAS  Google Scholar 

  • Rosner A, Shibloeth Y, Spiegel S, Krisbai L, Kölber M (1998) Evaluating the use of immunocapture and sap-dilution PCR for the detection of Prunus necrotic ringspot virus. Acta Hortic 472, 227–233.

    CAS  Google Scholar 

  • Rowhani A, Uyemoto JK, Golino DA (1997) A comparison between serological and biological assays in detecting Grapevine leaf roll-associated viruses. Plant Dis 81: 779–801.

    Article  Google Scholar 

  • Rowhani A, Bicardi L, Routh G, Daubert SD, Golino DA (1998) Development of a sensitive colorimetric PCR assay for detection of viruses in woody plants. Plant Dis 82: 880–884.

    Article  CAS  Google Scholar 

  • Rowhani A, Uyemoto JK, Golino DA, Martelli GP (2005) Pathogen testing and certification of Vitis and Prunus species. Annu Rev Phytopathol 43: 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Fayad A, Barthe G, Brlansky RH (2005) A multiplex polymerase chain reaction method for reliable sensitive and simultaneous detection of multiple viruses in citrus trees. J Virol Meth 128: 176–182.

    Article  CAS  Google Scholar 

  • Rubio L, Ayylón MA, Guerin J, Pappu H, Niblett C, Moreno P (1996) Differentiation of citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of coat protein gene. Ann Appl Biol 129: 479–489.

    Article  CAS  Google Scholar 

  • Russo P, Miller L, Sing RP, Slack SA (1999) Comparison of PLRV and PVY detection in potato seed samples tested by Florida winter field inspection and RT-PCR. Amer J Potato Res 76: 313–316.

    Article  CAS  Google Scholar 

  • Ryang B-S, Kobaori T, Matsumoto T, Kosaka Y, Ohki ST (2004) Cucumber mosaic virus 2b protein compensates for restricted systemic spread of Potato virus Y in doubly infected tobacco. J Gen Virol 85: 3405–3414.

    Article  CAS  PubMed  Google Scholar 

  • Rybak M, Kountrias A, Eppler A, Jelkman W, Heinze C, Adam G (2004) Improvement of RT-PCR based detection of two closteroviruses associated with Littlel cherry disease in sweet cherries. J Phytopathol 152: 65–68.

    Article  CAS  Google Scholar 

  • Saade M, Aparicio F, Sánchez-Navarro JA, Herranz MC, Myrta A, Di Terlizzi B, Pallás V (2000) Simultaneous detection of three ilarviruses affecting stone fruit trees by noniosotopic molecular hybridization and multiplex reverse transcription-polymerase chain reaction. Phytopathology 90: 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Ohara T, Sugimoto T, Hayashi Y, Hataya T, Shikata E (1995) Detection of Citrus exocortis viroid by PCR-microplate hybridization. Res Bull Plant Protect Service Japan 31, 47–55.

    CAS  Google Scholar 

  • Saldarelli P, Minafra A, Martelli GP, Walter B (1994) Detection of grapevine leaf roll-associated closterovirus III by molecular hybridization. Plant Pathol 43: 91–96.

    Article  Google Scholar 

  • Saldarelli P, Barbarossa L, Griew F, Gallitelli D (1996) Digoxigenin-labeled riboprobes applied to phytosanitary certification of tomato in Italy. Plant Dis 80: 1343–1346.

    Article  Google Scholar 

  • Sambade A, Rubio L, Garnsey SM, Costa N, Müller GW, Peyrou M, Guerri J, Moreno P (2002) Comparison of viral RNA populations of pathogenetically distinct isolates of Citrus tristeza virus: application to monitoring cross-protection. Plant Pathol 51: 257–265.

    Article  CAS  Google Scholar 

  • Sánchez-Navarro JA, Cañizares MC, Cano EA, Pallas V (1999) Simultaneous detection of five carnation viruses by nonisotopic molecular hybridization. J Virol Meth 82: 167–175.

    Article  Google Scholar 

  • Sánchez-Navarro JA, Aparicio F, Herranz MC, Minafra A, Myrta A, Pallás V (2005) Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Eur J Plant Pathol 111: 77–84.

    Article  CAS  Google Scholar 

  • Sano T, Smith CL, Cantor C (1992) Immuno-PCR very sensitive antigen detection by means of specific antibody complexes. Science 258: 120–122.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Shikata E (1977) Studies on the host range of hop stunt disease in Japan. Proc Japan Acad 53B: 103–108.

    Article  Google Scholar 

  • Sasaki M, Shikata E (1980) Hop stunt disease, a new viroid disease occurring in Japan. Rev Plant Protect Res 13: 97–113.

    Google Scholar 

  • Sasaki M, Fukamizu T, Yamamoto K, Ozawa T, Kagami Y, Shikata E (1981) Detection of HSVd in the latent-infected hops by mass diagnosis and its application. Ann Phytopath Soc Jpn 47: 416.

    Google Scholar 

  • Schneider AL, Sherman DJ, Stone AL, Damsteegt VD, Frederick RD (2004) Specific detection and quantification of Plum pox virus by real-time fluorescent reverse transcription PCR. J Virol Meth 120: 97–105.

    Article  CAS  Google Scholar 

  • Schoen CD, Knorr D, Leone G (1996) Detection of Potato leaf roll virus in dormant potato tubers by immunocapture and a fluorogenic 5′ nuclease RT-PCR assay. Phytopathology 86: 993–999.

    Article  CAS  Google Scholar 

  • Schumacher J, Randles JW, Riesner D (1983) Viroid and virusoid detection: an electrophoretic technique with the sensitivity of molecular hybridization. Analyt Biochem 135: 288–295.

    Article  CAS  PubMed  Google Scholar 

  • Sefc KM, Leonhardt W, Steinkellner H (2000) Partial sequence identification of Grapevine leaf roll-associated virus 1 and development of a highly sensitive IC-RT-PCR detection method. J Virol Meth 86: 101–106.

    Article  CAS  Google Scholar 

  • Seifers DL, Harvey TL, Martin TJ, Jensen SG (1997) Identification of the wheat curl mite as the vector of the High Plains virus of corn and wheat. Plant Dis 81: 1161–1166.

    Article  Google Scholar 

  • Seifers DL, Harvey TL, Martin TJ, Haber S, She YM, Ens W, Standing KG, Salmon R, Gera A (2005) Association of a virus with wheat displaying yellow head disease symptoms in the Great Plains. Plant Dis 89: 888–895

    Article  CAS  Google Scholar 

  • Semancik JS, Conejero V, Gerhart J (1977) Citrus exocortis viroid: survey of protein synthesis in Xenopus laevis oocytes following addition of viroid RNA. Virology 80: 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Seoh M-L, Wong S-M, Lee Z (1998) Simultaneous TD/RT-PCR detection of cymbidium mosaic potexvirus and odontoglossum ringspot tobamovirus with a single pair of primers. J Virol Meth 72: 197–204.

    Article  CAS  Google Scholar 

  • Sether DM, Ullman DE, Hu JS (1998) Transmission of Pineapple mealy bug wilt-associated virus by two species of mealy bug (Dysmicoccus spp.). Phytopathology 88: 1224–1230.

    Article  CAS  PubMed  Google Scholar 

  • Sether DM, Melzer MJ, Busto J, Zee F, Hu JS (2005a) Diversity and mealybug transmissibility of ampeloviruses in pineapple. Plant Dis 89: 450–456.

    Article  CAS  Google Scholar 

  • Sether DM, Melzer MJ, Subere CV, Hu JS (2005b) Pineapple mealybug wilt-associated viruses 1, 3 and 4 and Grapevine leaf roll-associated viruses 4, 5, 6 and 9 are a distinct group in the genus Ampelovirus. Proceedings of the XIII International Congress Virology, American Society of Microbiology, Washington, pp. 121–122.

    Google Scholar 

  • Shalaby AA, Nakhla MK, Soliman AM, Mazyad HM, Hadidi A, Maxwell DP (2002) Development of a highly sensitive multiplex reverse transcription-polymerase chain reaction (m-RT-PCR) method for detection of three potato viruses in a single reaction and nested PCR. Arab J Biotech 5: 275–286.

    Google Scholar 

  • Shamloul AM, Minafra A, Hadidi A, Waterworth HE, Giunchedi L, Alam EK (1995) Peach latent mosaic viroid nucleotide sequence of an Italian isolate, sensitive detection using RT-PCR and geographic distribution. Acta Hortic 386, 522–530.

    CAS  Google Scholar 

  • Shamloul AM, Hadidi A, Zhu SF, Singh RP, Sagredo B (1997) Sensitive detection of Potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Canad J Plant Pathol 19: 89–91.

    Article  Google Scholar 

  • Shamloul AM, Hadidi A, Madkour MA, Makkouk KM (1999) Sensitive detection of banana bunchy top and faba bean necrotic yellows virus from infected leaves, in vitro tissue cultures and viruliferous aphids using polymerase chain reaction. Canad J Plant Pathol 21: 326–337.

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Rani G, Zaidi AA, Hallan VK, Nagpal AK, Virk GS (2008) In vitro production of Indian citrus ringspot virus (ICRSV)-free Kinnow plants employing thermotherapy coupled with shoot tip grafting. Plant Cell Tiss Organ Cult 92: 85–92.

    Article  Google Scholar 

  • Sherwood JL, Sanborn MR, Keyser GC (1987) Production of monoclonal antibodies to Peanut mottle virus and their use in enzyme-linked immunosorbent assay and dot immunobinding assay. Phytopathology 77: 1158–1161.

    Article  Google Scholar 

  • Shi L, Hu W, Su Z, Lu X, Tong W (2003) Microarrays: technologies and applications. In: Applied Mycology and Biotechnology, Vol 3, Fungal Genetics. Elsevier, the Netherlands, pp. 271–293.

    Google Scholar 

  • Shoen CD, Knorr D, Leone G (1996) Detection of Potato leaf roll virus in dormant tubers by immunocapture and a fluorogenic 5′ nuclease RT-PCR assay. Phytopathology 86: 993–999.

    Article  Google Scholar 

  • Silva C, Tereso S, Nolasco G, Oliveira MM (2003) Cellular location of Prune dwarf virus in almond sections by in situ reverse transcription-polymerase chain reaction. Phytopathology 93: 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Singh RP (1970) Occurrence, symptoms and diagnostic hosts of strains of potato spindle tuber virus. Phytopathology 60: 1314.

    Google Scholar 

  • Singh RP (1971) A local lesion host for potato spindle tuber virus. Phytopathology 61: 1034–1035.

    Article  Google Scholar 

  • Singh RP, Boucher A, Seabrook JEA (1988) Detection of the mild strains of Potato spindle tuber viroid from a single true potato seed by return electrophoresis. Phytopathology 78: 663–667.

    Article  Google Scholar 

  • Singh RP, Dilworth AD, Ao X, Singh M, Baranwal VK (2009) Citrus exocortis viroid transmission through commercially-distributed seeds of Impatiens and Verbena plants. Eur J Plant Pathol 124: 691–694.

    Article  Google Scholar 

  • Sipahioglu HM, Ocak MU (2006) Use of dried high-phenolic laden host leaves for virus and viroid preservation and detection by PCR methods. J Virol Meth 137: 120–124.

    Article  CAS  Google Scholar 

  • Skiada FG, Grigoriadour K, Maliogka VI, Katis NI, Eleftheeriou EP (2009) Elimination of Grapevine leaf roll-associated virus 1 and Grapevine Rupestris stem pitting-associated virus from grapevine cv. Agiogitko and a micropropagation protocol for mass production of virus-free plantlets. J Plant Pathol 91: 177–184.

    CAS  Google Scholar 

  • Skrzeczkowski LJ, Howell WE, Mink GI (1996) Occurrence of Peach latent mosaic viroid in commercial peach and nectarine cultivars in the US. Plant Dis 80: 823.

    Article  Google Scholar 

  • Slack SA, Shepherd RJ (1975) Serological detection of seedborne Barley stripe mosaic virus by a simplified radial-diffusion technique. Phytopathology 65: 948–955.

    Article  Google Scholar 

  • Smith OP, Hunst PL, Hewings AD, Stone AL, Tolin SA, Damsteegt VD (1991) Identification of dsRNAs associated with Soybean dwarf virus-infected soybean. Phytopathology 81: 131–134.

    Article  CAS  Google Scholar 

  • Smith OP, Damsteegt VD, Keller CJ, Beck RJ (1993) Detection of Potato leaf roll virus in leaf and aphid extracts by dot blot hybridization. Plant Dis 77: 1098–1102.

    Article  CAS  Google Scholar 

  • Smith TN, Wylie SJ, Coutts BA, Jones RAC (2006) Localized distribution of Iris yellow spot virus within leeks and its reliable large-scale detection. Plant Dis 90: 729–733.

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark WD, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103: 12115–12120.

    Article  CAS  PubMed  Google Scholar 

  • Sokmen MA, Barker H, Torrance L (1998) Factors affecting the detection of Potato moptop virus in potato tubers and improvement of test procedures for more reliable assays. Ann Appl Biol 133: 55–63.

    Article  CAS  Google Scholar 

  • Soler S, Díetz MJ, Roselló S, Nuez F (1999) Movement and distribution of Tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Canad J Plant Pathol 21: 317–325.

    Article  Google Scholar 

  • Soria SL, Vega R, Damsteegt VD, McDaniel LL, Kitto SL, Evans TA (1998) Occurrence and partial characterization of a new mechanically transmissible virus in mashua from the Ecuadorian Highlands. Plant Dis 82: 69–73.

    Article  Google Scholar 

  • Souza-Dias de JAC, Russo P, Betti JA, Miller L, Slack SA (1999) Simplified extraction method for ELISAand PCR detection of Potato leaf roll luteovirus primary infection in dormant tubers. Amer J Potato Res 76: 209–213.

    Article  Google Scholar 

  • Soweha HE (2005) Detection of banna bunchy top nanavirus using polymerase chain reaction in different Egyptian banana cultivars. Internat J Agric Bot 7: 698–700.

    CAS  Google Scholar 

  • Spiegel S, Martin RR (1993) Improved detection of Potato leaf roll virus in dormant tubers and microtubers by polymerase chain reaction and ELISA. Ann Appl Biol 122: 493–500.

    Article  CAS  Google Scholar 

  • Spiegel S, Scott SN, Bowman-Vance V, Tam Y, Galiakparov MN, Rosmer A (1996) Improved detection of Prunus necrotic ringspot virus by the polymerase chain reaction. Eur J Plant Pathol 102: 681–685.

    Article  CAS  Google Scholar 

  • Spiegel S, Kovalenko EM, Varga A, James D (2004) Detection and partial molecular characterization of two Plum pox virus isolates from plum and wild apricot in southeast Kazakstan. Plant Dis 88: 973–979.

    Article  CAS  Google Scholar 

  • Stack-Lorenzen P, Guilton MC, Werner R, Muhlbach HP (1997) Detection and tissue distribution of Potato spindle tuber viroid in infected tomato plants by tissue imprint hybridization. Arch Virol 142: 1289–1296.

    Article  Google Scholar 

  • Subramanian KS, Narayanasamy P (1978) Mechanical transmission of whiteflyborne yellow mosaic virus of Lablab niger Medikus. Curr Sci 47: 92–93.

    Google Scholar 

  • Sudharsana MR, Reddy DVR (1989) Penicillinase based enzyme-linked immunosorbent assay for the detection of plant viruses. J Virol Meth 26: 45–52.

    Article  Google Scholar 

  • Suehiro N, Natsuaki T, Watanabe T, Okuda S (2004) An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85: 2087–2098.

    Article  CAS  PubMed  Google Scholar 

  • Suehiro N, Matsuda K, Okuda S, Natsuaki T (2005) A simplified method for obtaining plant viral RNA for RT-PCR. J Virol Meth 125: 67–73.

    Article  CAS  Google Scholar 

  • Surguchova N, Chirkov S, Atabekov J (1998) Enzyme-linked immunosorbent assay (ELISA) of nepoviruses using an inorganic pyrophosphatase of Escherichia coli as enzyme label. J Phytopathol Plant Protect 31: 535–541.

    Article  CAS  Google Scholar 

  • Swanson MM, Valanad GB, Muniyappa V, Harrison BD (1998) Serological detection and antigenic variation of two whitefly-transmitted geminiviruses: tobacco leafcurl and cotton yellow vein mosaic viruses. Ann Appl Biol 132: 427–435.

    Article  Google Scholar 

  • Szegö A, Tóth EK, Potyondi L, Lukács N (2005) Detection of high molecular weight dsRNA persisting in Dianthus species. Acta Biol Szege 49: 17–19.

    Google Scholar 

  • Tabler M, Tsagris M (2004) Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci 9: 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Tairo F, Jones RAC, Valkonen JPT (2006) Potyvirus complexes in sweet potato: occurrence in Australia, serological and molecular resolution and analysis of Sweet potato virus 2 (SPV-2) component. Plant Dis 90: 1120–1128.

    Article  CAS  Google Scholar 

  • Taiwo MA, Kareem KT, Nsa IY, D’A Hughes J (2007) Cowpea viruses: effect of single and mixed infections on symptomatology and virus concentration. Virol J 4: 95, DOI: 10.1186/1743-422x-4-95

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Tiongco ER, Cabuatan PQ, Konganezawa H, Hibino H, Omura T (1993) Detection of Rice tungro bacilliform virus by polymerase chain reaction for assessing mild infection of plants and viruliferous vector leafhoppers. Phytopathology 83: 655–659.

    Article  CAS  Google Scholar 

  • Takeshita M, Uchiba T, Takanami Y (1999) Sensitive detection of Cucumber mosaic cucumovirus RNA with digoxigenin-labeled cRNA probe. J Fac Agric Kyushy Univ 43: 349–354.

    CAS  Google Scholar 

  • Takeuchi S, Okuda M, Hanada K, Kawada Y, Kameya-Iwaki M (2001) Spotted wilt disease of cucumber (Cucumis sativus) caused by Melon yellow spot virus. Jpn J Phytopathol 67: 46–51.

    Google Scholar 

  • Tanina K, Inoue K, Date H, Okuda M, Hanada K, Nasu H, Kasuyama S (2001) Necrotic spot disease of Cineraria caused by Impatiens necrotic spot virus. Jpn J Phytopathol 67: 42–45.

    Google Scholar 

  • Terrada E, Kerschbaumer RJ, Giunta G, Galeffi P, Himuler G, Cambra M (2000) Fully “recombinant enzyme-linked immunosorbent assays” using genetically engineered single-chain-antibody fusion proteins for detection of Citrus tristeza virus. Phytpathology 90: 1337–1344.

    Article  CAS  Google Scholar 

  • Terzakis M, Avgelis AD, Jones AT, Katis NI (2002) Artichoke yellow ringspot virus infecting vetch (Vicia sativa) in Greece. Phytoparasitica 30: 195–197.

    Article  Google Scholar 

  • Tessitori M, La Rosa R, Albanese G, Catara A (1996) PCR diagnosis of citrus viroids in field samples. Proceedings of the 13th Conference of International Organization Citrus Virology, IOCV, Riverside, CA, pp. 230–235.

    Google Scholar 

  • Teycheney P-Y, Acina I, Lockhart BEL, Candresse T (2007) Detection of Banana mild mosaic virus and Banana virus X by polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR). J Virol Meth 142: 41–49.

    Article  CAS  Google Scholar 

  • Thomas JE, Geering ADW, Gambley CF, Kessling AP, White M (1997) Purification, properties and diagnosis of banana bract mosaic potyvirus and its distinction from abaca mosaic potyvirus. Phytopathology 87: 698–705.

    Article  CAS  PubMed  Google Scholar 

  • Thompson KG, Dietzgen RG, Thomas JE, Teakle DS (1996) Detection of Pineapple bacilliform virus using the polymerase chain reaction. Ann Appl Biol 129: 57–64.

    Article  Google Scholar 

  • Thompson JR, Wetzel S, Klerks MM, Vakovác D, Schoen CD, Park J, Jelkmann W (2003) Multiplex RT-PCR detection of four aphidborne strawberry viruses in Fragaria spp. in combination with a plant mRNA specific internal control. J Virol Meth 111: 85–93.

    Article  CAS  Google Scholar 

  • Thottappilly G, Dahal G, Lockhart BEL (1998) Studies on a Nigerian isolate of banana streak badnavirus. I. Purification and enzyme-linked immunosorbent assay. Ann Appl Biol 132: 253–261.

    Article  Google Scholar 

  • Thottappilly G, Qiu WP, Batten JS, Hughes JN, Scholthof KBG (1999) A new virus on maize in Nigeria: maize mild mottle virus. Plant Dis 83: 302.

    Article  Google Scholar 

  • Tomažič I, Pleško IM, Petrovič N, Ravnikar M, Korosec-Koruza Z (2008) Introduction of Grapevine virus B and Grapevine leaf roll-associated virus 2 testing in sanitary selection of grapevine. Acta Agric Slovenia 91: 75–85.

    Article  Google Scholar 

  • Tomessoli L, Lumia V, Cerato C, Ghedini R (1998) Occurrence of potato tuber necrotic ringspot disease (PNTRD) in Italy. Plant Dis 82: 350.

    Article  Google Scholar 

  • Toth RL, Harper K, Mayo MA, Torrance L (1999) Fusion protein of single-chain variable fragments derived from phage display libraries are effective reagents for routine diagnosis of Potato leafroll virus. Phytopathology 89: 1015–1021.

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Hikichi Y, Takeuchi S, Okumura A, Nasu Y, Takeuchi S, Okumura A, Nasu Y, Okuno T, Suzuki K (2004) Efficient inactivation of Pepper mild mottle virus (PMMoV) in harvested seeds of green pepper (Capsicum annuum L.) assessed by a reverse transcription and polymerase chain reaction (RT-PCR)-based amplification. Sci Rep Fac Agric Okayama Univ 93: 29–32.

    CAS  Google Scholar 

  • Turturo C, D’Onghia AM, Minafra A, Savino V (1998) PCR detection of Cirus exocortis and Citrus cacahexia viroids. Phytopathol Mediterr 37: 99–105.

    CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluorescent upon hybridization. Nature Biotechnol 14: 303–308.

    Article  CAS  Google Scholar 

  • Tzanetakis IE, Halgren AB (2004) Identification and detection of a virus associated with strawberry pallidosis disease. Plant Dis 88: 383–390.

    Article  CAS  Google Scholar 

  • Uchiba T, Takeshita M, Takanami Y (1999) Quantitative detection of cucumber mosaic cucumovirus RNA with microplate hybridization using digoxigenin-labeled oligodeoxy-ribonucleotide probe. J Fac Agric Kyushu Univ 43: 343–348.

    CAS  Google Scholar 

  • Uga H, Tsuda S (2005) A one-step reverse transcription-polymerase chain reaction system for the simultaneous detection and identification of multiple tospovirus infection. Phytopathology 96: 166–171.

    Article  CAS  Google Scholar 

  • Uga M, Sipahioglu HM, Ocak M, Myrta A (2007) Detection of Apricot latent virus and Plum bark necrosis stem pitting-associated virus by RT-PCR in eastern Anatolia (Turkey). Bull OEPP/EPPO 37: 181–185.

    Google Scholar 

  • Usta M, Sipahioglu HM, Ocak M, Myrta A (2007) Detection of Apricot latent virus and Plum bark necrosis stem pitting-associated virus by RT-PCR in eastern Anatolia (Turkey). Bull OEPP 37: 181–185.

    Google Scholar 

  • Vadamalai G, Hanold D, Rezaian MA, Randles JW (2006) Variants of Coconut cadang-cadang viroid isolated from an African oil palm (Elaies guineensis Jacq.) in Malaysia. Arch Virol: DOI: 10.1007/s00705-005-0710-y.

    PubMed  Google Scholar 

  • Vadamalai G, Perera AAFLK, Hanold D, Rezaian MA, Randles JW (2009) Detection of Cocount cadang-cadang viroid sequences in oil and coconut palm by ribonuclease protection assay. Ann Appl Biol 154: 117–125.

    Article  CAS  Google Scholar 

  • Vaïnopoulos C, Legréve A, Moreau V, Bragard C (2009) Broad-spectrum detection and quantitation methods of Soilborne mosaic virus isolates. J Virol Meth 159: 227–232.

    Article  CAS  Google Scholar 

  • Vaïnopoulos C, Legréve A, Lorca C, Moreau V (2006) Widespread occurrence of Wheat spindle streak moaic virus in Belgium. Plant Dis 90: 723–728.

    Article  CAS  Google Scholar 

  • Vaira AM, Veechiati M, Masenga V, Accotto GP (1996) A polyclonal antiserum against a recombinant viral protein combines specificity with versatility. J Virol Meth 48: 209–219.

    Article  Google Scholar 

  • Valverde R, Nameth ST, Jordan RL (1990) Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis 74: 225–258.

    Google Scholar 

  • Valverde RA, Dodds JA, Heick JA (1986) Double stranded RNA from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76: 459–465.

    Article  CAS  Google Scholar 

  • van der Vlugt CIM, Derks AFLM, Bonekamp PM, Goldbach RW (1993) Improved detection of Iris severe mosaic virus in secondarily infected iris bulbs. Ann Appl Biol 122: 279–288.

    Article  Google Scholar 

  • van der Vlugt RAA, Steffens P, Cuperus C, Barg E, Lessemann DE, Bos L, Vetten HJ (1999) Further evidence that Shallot yellow stripe virus (SYSV) is a distinct potyvirus and reidentification of Welsh onion yellow stripe virus as a SYSV strain. Phytopathology 89: 148–155.

    Article  PubMed  Google Scholar 

  • van Dorst HJM, Peters D (1974) Some biological observations on pale fruit, a viroid-incited disease of cucumber. Nether J Plant Pathol 80: 85–96

    Google Scholar 

  • Van Regenmortel MHV (1982) Serology and Immunochemistry of Plant Viruses. Academic, New York.

    Google Scholar 

  • van Schadewijk AR (1996) Detection of Tomato spotted wilt virus in dahlia. Acta Hortic 432, 384–391.

    Google Scholar 

  • Van Vuurde JWL, Maat DZ (1985) Enzyme-linked immunosorbent assay (ELISA) and disperse dye immunoassay (DIA): comparison of simultaneous and separate incubation of sample and conjugate for routine detection of Lettuce mosaic virus and Pea early browning virus in seeds. Nether J Plant Pathol 91: 3–13.

    Article  Google Scholar 

  • Varga A, James D (2005) Detection and differentiation of Plum pox virus using real-time multiplex PCR with SYBR Green and melting curve analysis: a rapid method for strain typing. J Virol Meth 123: 213–220.

    Article  CAS  Google Scholar 

  • Varga A, James D (2006) Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Meth 128: 184–190.

    Article  CAS  Google Scholar 

  • Varveri C (2000) Potato Y potyvirus detection by immunological and molecular techniques in plants and aphids. Phytoparasitica 28: 141–148.

    Article  CAS  Google Scholar 

  • Varveri C, Boutiska K (1998) Application of immunocapture PCR technique for plum pox potyvirus detection under field conditions in Greece and assays to simplify standard technique. Acta Hortic 472, 475–481.

    CAS  Google Scholar 

  • Varveri C, Candresse T, Cugusi M, Ravelonandro M, Dunez J (1988) Use of a 32P labeled transcribed RNA probe for dot hybridization detection of Plum pox virus. Phytopathology 78: 1280–1283.

    Article  CAS  Google Scholar 

  • Vašková D, Špak J, Klerks MM, Schoen CD, Thompson JR, Jelkmann W (2004) Real-time NASBA for detection of Strawberry vein banding virus. Eur J Plant Pathol 110: 213–221.

    Article  Google Scholar 

  • Vejaratpimol R, Channuntapipat C, Liewsaree P, Pewnim T, Ito K, Izuka M, Minamiura N (1998) Evaluation of enzyme-linked immunosorbent assays for the detection of Cymbidium mosaic virus in orchids. J Ferment Bioeng 86: 65–71.

    Article  CAS  Google Scholar 

  • Vejaratpimol R, Channuntapipat C, Pewnim T, Ito K, Iizuka M (1999) Detection and serological relationship of Cymbidium mosaic potexvirus isolates. J Biosci Bioengin 87: 161–168.

    Article  CAS  Google Scholar 

  • Venkitesh SR, Koganezawa H (1995) Detection of Rice tungro bacilliform virus in nonvector insect species following genomic amplification. Internat Rice Res Notes 20(1): 35–36.

    Google Scholar 

  • Vértesy J (1976) Embryological studies of Ilarvirus infected cherry seeds. Acta Hortic 67, 245–248.

    Google Scholar 

  • Vetten HJ, Ehlers U, Paul HL (1983) Detection of Potato virus Y and A in tubers by enzyme-linked immunosorbent assay after natural and artificial break of dormancy. Phytopathol Z 108: 41–53.

    Article  Google Scholar 

  • Viswanathan R, Premachandran MN (1998) Occurrence and distribution of Sugarcane bacilliform virus in the sugarcane germplasm collection in India. Sugar Cane 6, 9–18.

    Google Scholar 

  • Wah YFWC, Symons RH (1997) A high sensitivity RT-PCR for the diagnosis of grapevines viroids in the field and tissue culture samples. J Virol Meth 63: 57–69.

    Article  Google Scholar 

  • Wah YFWC, Symons RH (1999) Transmission of viroids via grapevine seeds. J Phytopathol 147: 285–291.

    Google Scholar 

  • Walia Y, Kumar Y, Rana T, Bharadwaj P, Ram R, Thakur PD, Sharma U, Hallan V, Zaidi AA ( 2009) Molecular characterization and variability analysis of Apple scar skin viroid. J Gen Plant Pathol 75: 307–311.

    Article  CAS  Google Scholar 

  • Walkey DGA, Lyons NF, Taylor JD (1992) An evaluation of a virobacterial agglutination test for the detection of plant viruses. Plant Pathol 41: 462–471.

    Article  Google Scholar 

  • Wang W-Y, Mink GI, Silbernagel MJ (1985) The use of enzyme-linked immunosorbent assay (EIBA) to detect Bean common mosaic virus in individual bean seeds. Phytopathology 75: 1352 (Abst.).

    Google Scholar 

  • Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG, Erdman DD, Mardis ER, Hickenbotham M, Magrini V, Eldred, Laterille JP, Wilson RK, Ganem D, De Risi JL (2003) Viral discovery and sequence recovery using DNA microarrays. PLOS Biol 1: 257–260.

    Article  CAS  Google Scholar 

  • Wang X, Zhou C, Thang K, Zhou Y, Li Z (2009) A rapid one-step multiplex RT-PCR assay for the simultaneous detection of five citrus viroids in China. Eur J Plant Pathol 124: 175–180.

    Article  CAS  Google Scholar 

  • Weathers LG, Greer FC (1972) Gynura as a host for exocortis virus of citrus. In: Price WC (ed), Proceedings of the 5th Conference on International Organization, Citrus Virology University Florida Press, Gainsville, pp. 95–98.

    Google Scholar 

  • Webster CG, Wylie SJ, Jones MGK (2004) Diagnosis of plant viral pathogens. Curr Sci 86: 1604–1607.

    CAS  Google Scholar 

  • Wei T, Lu G, Clover G (2008) Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J Virol Meth 151: 132–139.

    Article  CAS  Google Scholar 

  • Wei T, Lu G, Clover GRG (2009) A multiplex RT-PCR for the detection of Potato yellow vein virus, Tobacco rattle virus and Tomato infectious chlorosis virus in potato with a plant internal amplification control. Plant Pathol 58: 203–209.

    Article  CAS  Google Scholar 

  • Weidemann HL, Buchta U (1998) A simple and rapid method for the detection of Potato spindle tuber viroid (PSTVd) by RT-PCR. Potato Res 41: 1–8.

    Article  CAS  Google Scholar 

  • Weier HU, Gray JW (1988) A programmable system to perform the polymerase chain reaction. DNA 7: 441–447.

    CAS  PubMed  Google Scholar 

  • Welnicki M, Hiruki C (1992) Highly sensitive digoxigenin-labeled DNA probe for the detection of Potato spindle tuber viroid. J Virol Meth 39: 91–99.

    Article  CAS  Google Scholar 

  • Wesley SV, Miller JS, Devi PS, Delfosse P, Naidu RA, Mayo MA, Reddy DVR, Jana MK (1996) Sensitive broad-spectrums detection of Indian peanut clump virus by nonradioactive nucleic acid probes. Phytopathology 86: 1234–1237.

    Article  CAS  Google Scholar 

  • Wetzel T, Candresse T, Macquaire G, Ravelonandro M, Dunez J (1992) A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J Virol Meth 39: 27–37.

    Article  CAS  Google Scholar 

  • Wetzel T, Jardak R, Meunier L, Ghorbel A, Reustle GM, Krczal G (2002) Simultaneous RT-PCR detection and differentiation of arabis mosaic and grapevine fanleaf nepoviruses in grapevines with a single pair of primers. J Virol Meth 101: 63–69.

    Article  CAS  Google Scholar 

  • Whitefield AE, Campbell LR, Sherwood JL, Ullman DE (2003) Tissue blot immunoassay for detection of Tomato spotted wilt virus in Ranunculus asiaticus and other ornamentals. Plant Dis 87: 618–622.

    Article  Google Scholar 

  • Whiteworth JL, Mosley AR, Reed GL (2000) Monitoring current seasons Potato leafroll virus movement with an immunosorbent direct tissue blot assay. Amer J Potato Res 77: 1–9.

    Article  Google Scholar 

  • Wisler GC, Li RH, Liu HY, Lowry DS, Duffus JE (1998) Tomato chlorosis virus: a new whitefly transmitted, phloem-limited bipartite closterovirus of tomato. Phytopathology 88: 402–409.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu C, Yang C, Zhou X (2009) Monoclonal antibodies against the recombinant nucleocapsid protein of Tomato spotted wilt virus and its application in virus detection. J Phytopathol 157: 344–349.

    Article  CAS  Google Scholar 

  • Wylie S, Wilson CR, Jones RAC, Jones MGK (1993) A polymerase chain reaction assay for Cucumber mosaic virus in lupin seeds. Austr J Agric Res 44: 41–51.

    Article  CAS  Google Scholar 

  • Xie WS, Hu JS (1995) Molecular cloning, sequence analysis and detection of Banana bunchy top virus Hawaii. Phytopathology 85: 339–347.

    Article  CAS  Google Scholar 

  • Xu L, Hampton RO (1996) Molecular detection of bean common mosaic and bean common mosaic necrosis potyviruses and pathogroups. Arch Virol 141: 1961–1977.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Nie J (2006) Identification, characterization and molecular detection of Alfalafa mosaic virus in potato. Phytopathology 96: 1237–1242.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, De Haan TL, De Boer SH (2004) Detection and confirmation of Potato moptop virus in potatoes produced in the United States and Canada. Plant Dis 88: 363–367.

    Article  CAS  Google Scholar 

  • Xu ZY, Hong N, Xing B, Wang GP (2006) Partial molecular characterization of a Chinese isolate of Grapevine leafroll-associated virus 2 and production of an antisera to recombinant viral proteins. J Plant Pathol 88: 89–94.

    CAS  Google Scholar 

  • Xu D-L, Park J-W, Mirkov TE, Zhou GH (2008)Viruses causing mosaic diseases in sugarcane and their genetic diversity in southern China. Arch Virol, DOI: 10.1007/s00705-008-0072-3.

    Google Scholar 

  • Yamane K, Oyama K, Iuchi E, Ogawa H, Suzuki T, Natsuaki T (2008) RT-PCR detection of Odontoglossum ringspot virus, Cymbidium mosaic virus and tospoviruses and association of infections with leaf-yellowing symptoms in Phalaenopsis. J Phytopathol 156: 268–273.

    Article  CAS  Google Scholar 

  • Yamashita H, Holikoshi K, Shimada H, Matsumoto T (1996) Analysis of double-stranded RNA for plant virus diagnosis. Res Bull Plant Protect Serv Jpn 32, 111–114.

    CAS  Google Scholar 

  • Yambao MLM, Cabauatan PQ, Azzam O (1998) Differentiation of Rice tungro spherical virus variants by RT-PCR and RFLP. Internat Rice Res Notes 23(2): 22–24.

    Google Scholar 

  • Yang Y, Kim KS, Anderson EJ (1997) Seed transmission of Cucumber mosaic virus in spinach. Phytopathology 87: 924–931.

    Article  CAS  PubMed  Google Scholar 

  • Yang ZN, Mirkov TE (1997) Sequence and relationships of sugarcane mosaic and sorghum virus strains and development of RT-PCR based RFLPs for strain discrimination. Phytopathology 87: 932–939.

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Zheng T, Xu L, Lei JL, Chen JP, Yu SQ (2000) Coinfection of Wheat yellow mosaic virus and rodshaped virus related to Soilborne wheat mosaic virus on winter wheat in Yantai district. Chinese J Virol 16: 80–82.

    Google Scholar 

  • Yokomi RK, De Borde RL (2005) Incidence, transmissibility and genotype analysis of Citrus tristeza virus (CTV) isolates from CTV eradicative and noneradicative districts in central California. Plant Dis 89: 859–886.

    Article  Google Scholar 

  • Zaitlin M, Hariharasubramanian V (1972) A gel electrophoretic analysis of proteins from plants infected with tobacco mosaic and potato spindle tuber viruses. Virology 47: 296–305.

    Article  CAS  PubMed  Google Scholar 

  • Zeigler A, Mayo MA, Torrance L (1998) Synthetic antigen from a peptide library can be an effective positive control in immunoassays for the detection and identification of two geminiviruses. Phytopathology 88: 1302–1305.

    Article  Google Scholar 

  • Zein HS, Miyatake K (2009) Development of rapid, specific and sensitive detection of Cucumber mosaic virus. Afr J Biotech 8: 751–769.

    CAS  Google Scholar 

  • Zhang YP, Uyemoto JK, Golino DA, Rowhani A (1998) Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem pitting disease. Phytopathology 88: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liv ET, Rohwer R, Ruan Y (2006) RNA viral community in human feces: prevalence of plant pathogenic virus. PLOS Biol 4: 23.

    Article  CAS  Google Scholar 

  • Zheng Y-X, Chen C-C, Chen Y-K, Jan F-J, (2008a) Identification and characterization of a potyvirus causing chlorotic spots on Phalaenopsis orchids. Eur J Plant Pathol 121: 87–95.

    Article  Google Scholar 

  • Zheng Y-X, Chen C-C, Yang C-J, Yeh S-D, Jan F-J (2008b) Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur J Plant Pathol 120: 199–209.

    Article  Google Scholar 

  • Zimmer RC (1979) Influence of agar on immunodiffusion serology of Pea seedborne mosaic virus. Plant Dis Rept 63: 278–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 1: Detection of Plant Viruses by Different Formats of Enzyme-Linked Immunosorbent Assay (ELISA) (Clark and Adams 1977)

2.1.1 Double-Antibody Sandwich (DAS)-ELISA

  1. (i)

    Precipitate globulins from the antiserum using 36% sodium sulfate; wash the precipitate with 18% sodium sulfate and store at −70°C; conjugate a portion of globulin with alkaline phosphatase using glutaraldehyde as the coupling agent.

  2. (ii)

    Dilute the globulins fraction (unlabeled) with 0.05 M carbonate buffer at pH 9.6 to yield a concentration of 10 μg protein/ml; add 200 μl of antibody solution to each well in polystyrene ELISA plates and incubate at 37°C for 3–5 h; empty the wells, wash thrice with 0.15 mM phosphate buffered saline solution pH 7.2 containing 0.05% Tween 20 (PBS-Tween) and dry.

  3. (iii)

    Add samples (purified antigen or extracts of infected tissues) in 200 μl quantities in PBS-Tween; incubate at 4°C overnight or for 18 h and wash the wells as before.

  4. (iv)

    Add aliquots of 200 μl of enzyme-labeled antibody conjugate to each well; incubate for 4 h at 37°C and wash the wells as before.

  5. (v)

    Add enzyme substrate p-nitrophenyl phosphate at a concentration of 1 mg/ml in diethanolamine buffer at pH 9.8 at room temperature; stop the reaction after 30 min by adding 3 M NaOH at 50μl/well.

  6. (vi)

    Determine the color intensity (OD) at 405 nm in an ELISA reader.

2.1.2 Direct Antigen Coating (DAC)-ELISA

  1. (i)

    Add samples at 200 μl to each well in the ELISA plate, incubate at 37°C for 1 h and wash the wells with PBS-Tween.

  2. (ii)

    Add antiserum at suitable dilution at 200 μl/well; incubate for 1 h at 37°C and wash the wells with PBS-Tween.

  3. (iii)

    Add enzyme-labeled antirabbit IgG at 200 μl to each well; incubate for 1 h at 37°C and wash the wells with PBS-Tween.

  4. (iv)

    Follow steps (v) and (vi) as in DAS-ELISA.

2.1.3 Protein A-Coating ELISA

  1. (i)

    Dissolve protein A (1–10 mg/ml) in carbonate buffer; dispense 200 μl/well in ELISA plate; incubate for1 h at 37°C and wash in PBS-Tween.

  2. (ii)

    Dispense antiserum (at suitable dilution) at 200 μl/well; incubate for 1 h at 37°C and wash with PBS-Tween.

  3. (iii)

    Dispense 200 μl of samples (purified antigen/extracts of tissues at suitable dilutions); incubate at 37°C for 1 h and wash the wells with PBS-Tween.

  4. (iv)

    Dispense 200 μl of antiserum and proceed as in step (ii).

  5. (v)

    Dispense enzyme-labeled antirabbit IgG or Fc at 200 μl/well; incubate for 1 h at 37°C and wash with PBS-Tween.

  6. (vi)

    Follow steps (v) and (vi) as in DAS-ELISA.

2.1.4 Indirect ELISA

  1. (i)

    Dispense goat or chicken antivirus globulins (1–10 μl/ml) at 200 μl/well; incubate at 37°C for 1 h and wash with PBS-Tween.

  2. (ii)

    Dispense 200 μl of suitably diluted samples in each well; incubate at 37°C for 1–3 h and wash with PBS-Tween.

  3. (iii)

    Dispense 200 μl of antivirus rabbit globulin/well; incubate at 37°C for 1–3 h and wash with PBS-Tween.

  4. (iv)

    Dispense 200 μl of antirabbit globulin conjugate/well; incubate for 1 h at 37°C.

  5. (v)

    Follow steps (v) and (vi) as in DAS-ELISA.

Appendix 2: Detection of Grapevine leaf roll-associated virus-3 Using a Single-Chain Fragment Variable Antibody in ELISA (Cogotzi et al. 2009)

  1. (i)

    Coat the microtiter plates with anti-GLRaV-3 PAb (IgGLR3, 0.5 mg/ml) (Agritest, Italy) or purified scFvLR3 or CL-LR3 at different concentrations (starting from 0.33 mg/ml) and incubate for 2 h at 37°C.

  2. (ii)

    Wash the plates three times with PBST containing 0.05% Tween-20 and incubate overnight at 4°C after adding extracts from infected grapevine petioles or phloem tissues that are crushed in ten volumes of extraction buffer [PBS containing 0.05% Tween-20, 20% polyvinylpyrrolidone (PVP), pH 7.4] and centrifuge at 300 g for 3 min.

  3. (iii)

    Detect the captured antigens with an alkaline phosphatase (AP)-conjugated anti-GLRaV-3 IgG (IgGLR3AP, Agritest s.r.1), scFvLR3 (scFvLR3AP) or CL-LR3 (CL-LR3AP), diluted in conjugate buffer (PBS containing 0.05% Tween-20, 20% PVP, 2% bovine serum albumin, pH 7.4) and incubate for 3 h at 37°C and wash the plate as done before [step (ii) above].

  4. (iv)

    Incubate the plates with 1 mg/ml of p-nitrophenylphosphate in substrate buffer (0.1 M Tris–HCl, pH 9.5).

  5. (v)

    Record the absorption values at 405 nm after 1 h using ELISA reader.

Appendix 3: Detection of Iris yellow spot virus (IYSV) by ELISA Incorporating a Blocking Agent (Smith et al. 2006)

  1. (i)

    Extract the virus from plant tissues in phosphate buffered saline (1g/20 ml) consisting of 10 mM potassium phosphate, 150 mM sodium chloride, pH 7.2, Tween 20 (5 ml/l) and polyvinylpyrrolidone (20g/l) (PBST) using a leaf press (Pollahne, Hannover, Germany).

  2. (ii)

    Follow double antibody-sandwich ELISA protocol (Appendix 1).

  3. (iii)

    Incorporate a blocking step by adding skim milk powder (5% w/v) to the conjugate buffer.

  4. (iv)

    Perform the tests with and without the blocking step to determine the test reliability for both sets of tests.

Appendix 4: Detection of Cucumber mosaic virus (CMV) by Dot Immunobinding Assay (DIBA) (Zein and Miyatake 2009)

  1. (i)

    Collect young upper leaves from healthy and CMV-infected plants; roll them longitudinally to a form a tight scroll; cut with a sharp razor blade at the center and hold the cut surface immediately on the surface of a PVDF membrane (Bio-Rad) for 6–8 s.

  2. (ii)

    Homogenize the sample tissues with extraction buffer; use the extract for diluting the purified preparations (1:100) and gently transfer 2 μl of the mixture onto a PVDF membrane (0.45 μm pore size, Bio-Rad).

  3. (iii)

    Air-dry the membranes; block for 30 min with TBS buffer consisting of 10 mM Tris–HCl, pH 7.4, 0.15 M NaCl) containing defatted milk powder (50 g/l) (TBS-milk buffer) or in PBS buffer consisting of 8 mM Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, 3 mM NaN3, pH 7.4) containing 20 g/l Triton X-100 and defatted milk powder (PBS-milk buffer); wash the membranes three times in distilled water, if PBS-milk buffer is used.

  4. (iv)

    Incubate the membrane for 60 min in 1 μg/ml MAbs diluted with TBS-milk buffer or PBS-milk buffer; wash times of 5 min each with TBST or PBST (TBS or PBS + Tween-20, 3g/l) followed by two washes with distilled water.

  5. (v)

    Incubate the membranes for 60 min in 1/5,000 dilution in TBS-milk or PBS-milk buffer with appropriate goat anti-mouse alkaline phosphatase (AP)-conjugated antibody (Amersham Pharmacia Biotech).

  6. (vi)

    Wash the membranes as before and equilibrate in substrate buffer (0.1 M Tris–HCl, pH 9.5) for 5 min and the chromogenic substrate 5-bromo-4-chloro-3-indolyl-phosphate/4-nitroblue tetrazolium chloride (BCIP/NBT).

  7. (vii)

    Observe the development of purple color indicating positive reaction.

Appendix 5: Detection of Tomato spotted wilt virus (TSWV) in Different Tissues of Infected Plants by Tissue Blot Immunoassay (TBIA) (Whitefield et al. 2003)

  1. (i)

    Roll the healthy and infected leaves of herbaceous plants into a tight bundle; cut with a razor blade; gently blot the cut surface onto 0.45 μm Nitro ME nitrocellulose (NC) membranes (Micron Separations, Inc., USA) for 3–5 s.

  2. (ii)

    Incubate the rootlets sampled from dried test plant tubers in deionized water of 16–20 h at room temperature (RT) in 24-well microtiter plates (Costar Corp., USA); cut a cross section of each rootlet with the razor blade and press the cut surface onto the NC membrane.

  3. (iii)

    Air-dry the blotted membranes at RT; place them in glass hybridization tubes; allow reaction with reagents as detailed below: perform all incubations and washing steps at RT in a hybridization oven (Lab-Line, USA) at 16 rpm and expose the membranes sequentially to reagents and pour the reagents in and out of the tube without removing the membrane.

  4. (iv)

    Block membranes with 10 ml of 1% bovine serum albumin (BSA) in phosphate-buffered saline (PBS) consisting of 0.14 M NaCl, 1.0 mM potassium phosphate, 8.0 mM sodium phosphate and 2.5 mM KCl, pH 7.5 for 1 h.

  5. (v)

    Treat the membranes with the appropriate dilution of anti-NSs MAb from stock solution (1 mg/ml) based on preliminary experiments, as working dilutions may vary from 1:100 to 1: 200; dilute the antibody (Abs) in 4 ml of Ab dilution buffer consisting of PBS, 0.1% Empigen BB (Calbiochem, USA) and 0.1% BSA and incubate membranes with Ab for 2 h.

  6. (vi)

    Wash the membranes three times in PBS with 0.5% Tween (PBST) for 5 min for each wash and incubate in 4 ml of a 1:2,000 dilution of rabbit anitmouse alkaline phosphatase (AP) conjugate (Bio-Rad) for 1 h.

  7. (vii)

    Wash the membranes again in PBST three times for 5 min/wash; add AP substrate (Sigma Fast BCIP/NBT tablets) and incubate the membranes for 5–15 min.

  8. (viii)

    Rinse the membranes in water and examine after air-drying at RT.

  9. (ix)

    Look for the development of purple precipitate on the membrane, indicating the positive reaction.

  10. (x)

    Under field conditions, perform the entire procedure in disposable 50 ml polypropylene tubes (Sarstedt, USA); incubate the tubes in pocket or backpack and agitate periodically.

  11. (xi)

    Actively growing plant samples do not require presoaking step followed for testing dried tubers and perform all other steps without any change as mentioned above.

Appendix 6: Detection of Citrus psorosis virus (CPsV) by Direct Tissue Blot Immunoassay (DTBIA) (Martin et al. 2002)

  1. (i)

    Select young tender leaves or shoots; cut transversely; roll the leaf blade tightly to form a cylinder and gently press the freshly cut surface onto nitrocellulose membrane of 0.45 μm pore size (Bio-Rad, Spain) or nylon membrane (Amersham, Spain).

  2. (ii)

    Air-dry the prints; block with TBS buffer (10 mM Tris–HCl, pH 7.4, 0.5 M NaCl) containing 50 g/l defatted milk powder (TBS-milk powder) or in PBS buffer (8 mM Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl,0.14M NaCl,3 mM NaN3, pH 7.4) containing 20 g/l Triton X-100 and 50 g/l defatted milk powder (PBS-milk buffer) and wash the membranes in the latter case with distilled water before incubation with antibodies.

  3. (iii)

    For indirect detection, incubate the membranes in 1/10,000–1/50,000 dilution of ascites fluid containing MAb 13C5 or 2A3 or a 1:1 (v/v) mixture of the two MAbs in TBS-milk buffer for 90 min.

  4. (iv)

    Wash three times with TBST or PBST [TBS or PBS plus Tween 20 (3g/l)] and two washes (first and last) with distilled water and incubate in 1/20,000 dilution of TBS-milk or PBS-milk buffer with appropriate alkaline phosphatase (AP) conjugated antibody.

  5. (v)

    Wash the membranes as done earlier and equilibrate in substrate buffer (0.1 M Tris–HCl, pH 9.5) for 5 min and add the substrate.

  6. (vi)

    For direct detection, block the membrane as described earlier; incubate in a 1/10,000 dilution of the A322 antibodies conjugated with AP in TBS-milk buffer for 3 h and wash.

  7. (vii)

    Equilibrated in substrate buffer as indicated earlier; add the substrate and incubate at room temperature; use the chromogenic substrate 6-bromo-4-chloro-3-indolylphosphate (BCIP) or nitroblue tetrazolium (NBT) or chemiluminescent substrates [SPD or CPD- star (Roche Diagnostics)] as per manufacturer’s instructions.

Appendix 7: Detection of Citrus psorosis virus (CPsV) by Western Blotting Technique (Loconsole et al. 2006)

  1. (i)

    Grind the infected leaf samples (100 mg) from citrus or Chenopodium quinoa in 2.5 volumes of extraction buffer consisting of 0.5 M Tris–HCl, pH 8.8, 2% sodium dodecyl sulfate (SDS), 40% sucrose, 4% 2 mercaptoethanol; boil the extracts for 3 min and centrifuge at 4,000 rpm for 4 min.

  2. (ii)

    Analyze the aliquots of 5 μl of the supernatant by electrophoresis in 10% SDS slab gels together with recombinant virus coat protein (CP) (5 μg/μl) and 1 μg PC of purified virus preparation from C. quinoa.

  3. (iii)

    Electroblot the gels on polyvinyl difluoride membranes (PVDF, Immobilon-P, Millipore, USA); block with 1% bovine serum albumin (BSA), 5% non-fat dry milk, 0.05% Tween-20 in PBS buffer 1× for 2 h at room temperature and incubate the membranes with crude As.Ps.Rc1 serum diluted 1:2,000, 1:1,000 or 1:500 for 1 h.

  4. (iv)

    Wash three times of 10 min each in 1 × TBS, 0.1% Tween-20, incubate the membranes for 30 min with a 1:12,000 dilution in blocking solution of a goat antirabbit IgG-AP conjugate (Sigma, USA).

  5. (v)

    Wash three times of 15 min each; add 1 ml of CDP-star substrate (1:100) (Roche Applied Science, Switzerland) and detect the protein bands by exposure to x-ray films for 30 min.

Appendix 8: Detection of an Ampelovirus by Western Blot Analysis (Valverde et al. 1990; Maliogka et al. 2009)

2.8.1 Extraction of ds-RNA from Virus-Infected Plants

  1. (i)

    Grind 80 g cortical scrappings of grapevine in liquid nitrogen; transfer to a flask along with two volumes of 2 × STE (0.1 M NaCl, 0.05 M Tris-base, 0.001 M EDTA) also containing 2% ß-mercaptoethanol, 1% SDS and 0.7% Na2SO3 and shake well for 30 min.

  2. (ii)

    Centrifuge at 8,000 g for 15 min; transfer 10 ml of the upper aqueous phase to a 50-ml centrifuge tube (if 10-ml tube is not available, adjust the volume by adding 1 × STE); add 2.1 ml 95% ethanol to each tube and mix well.

  3. (iii)

    For chromatography, add the sample to cellulose (CF-11, Sigma-Aldrich); agitate for 1 h at room temperature and centrifuge at 16,000 g for 5 min.

  4. (iv)

    Discard the upper phase; dilute the pellet in 200 ml STE 16 (STE 10 × + 16% ethanol) and repeat centrifugation three times with the last one performed at 23,000 g for 7 min.

  5. (v)

    Dissolve the pellet in STE 16 and transfer to a column and repeat chromatography cycle before the final ds-RNA precipitation.

  6. (vi)

    Treat with RNase, DNAse I and proteinase K; analyze in 1.3% low-melting-point agarose (Applichem, Germany) for 3.5 h at 100 v and visualize using SYBR gold (Molecular probes, Eugene, USA).

2.8.2 Production of Virus-Specific Antiserum with Recombinant Coat Protein (CP)

  1. (i)

    Amplify the full-length CP gene using the primer set M3CpF/M3CpR which includes the SphI and PstI restriction sites respectively at the 5′ end; ligate the amplified DNA fragment directionally in the pQE31 protein expression vector (Qiagen, Germany) bearing 6 His residues at the N-terminus and introduce the plasmid by transformation into Escherichia coli strain M15 (Qiagen, Germany).

  2. (ii)

    Add 1 mM isopropylthiogalactopyranoside (IPTG) to the bacterial culture for induction of protein expression and incubate for 4 h.

  3. (iii)

    Purify the expressed CP protein under denaturing conditions using affinity chromatography with Ni-NTA resin (Qiagen) as per the manufacturer’s recommendations.

  4. (iv)

    Immunize a New Zealand white rabbit with three intramuscular injections of 150, 272 and 300 mg of purified recombinant protein respectively in an equal volume of incomplete Freund’s adjuvant at 2-week intervals.

  5. (v)

    Collect the blood at 10 days after the last injection and purify the antibodies using protein A affinity chromatography.

  6. (vi)

    Perform Western blotting analysis using the antiserum at a dilution of 1/2,000 and extracts from mature leaf petioles or cortical scrappings prepared by grinding in five volumes of loading buffer 2 × 100 mM Tris–HCl, pH 6.8, 2% ß-mercaptoethanol, 4% SDS, 0.2% bromophenol blue and 20% glycerol.

Appendix 9: Detection of Phalaenopsis Orchid Viruses by Immunoblot Technique (Jan and Yeh 1995; Zheng et al. 2008a,b)

  1. (i)

    Grind the leaves from mock-inoculated and virus-infected plants with three volumes (v/w) of dissociation buffer containing 100 mM Tris–HCl, pH 7.2, 2% ß-mercaptoethanol, 10% sucrose, 0.005% bromophenol blue and 10 mM EDTA.

  2. (ii)

    Boil the crude antigen extract and separate electrophoretically on a 12% sodium dodecyl sulphate (SDS)-polyacrylamide gel.

  3. (iii)

    Transfer to a 0.45 μm nitrocellulose membrane (Bio-Rad, USA) and pre-incubate with TSW buffer containing 10 mM Tris–HCl, pH 7.4, 0.9% NaCl, 0.25% gelatin, 0.1% Triton X-100 and 0.2% SDS.

  4. (iv)

    Incubate with primary antiserum against target virus (CP or NP) at required dilution (1:4,000) in TSW buffer for 1 h and then with alkaline phosphatase (AP)-conjugated goat anti-rabbit IgG (Jackson Immuno Research Labs, USA) for 1 h (1:5,000 dilution in TSW buffer).

  5. (v)

    Develop color by incubating with chromogenic substrates-nitroblue tetrazolium (NBT)/5-bromo-4-chloro-3-indolylphosphate paratoluidine salt in 100 mM NaCl, 5 mM MgCl2 and 100 mM Tris–HCl, pH 9.5, at room temperature for 10–30 min.

  6. (vi)

    Stop the reaction by rinsing the membrane in distilled water.

  7. (vii)

    Use extracts from healthy leaves and normal serum as controls.

Appendix 10: Detection of Passion fruit woodines virus (PWV) by Light Microscopic Staining Technique (Jan and Yeh 1995)

  1. (i)

    Prepare fresh epidermal strips from healthy and virus-infected leaves of golden passionfruit and treat them with 5% Triton X-100 in distilled water for 5 min.

  2. (ii)

    Float the epidermal strips on a solution of 10% pectinase and 4% cellulose in 20 mM phosphate-buffered saline (PBS, pH 7.2) for 30–60 min.

  3. (iii)

    Incubate the strips first with antisera against cylindrical inclusion protein (CIP) or the 51K protein (amorphous inclusion) at 1:400 dilution for 30 min at 37°C and incubate with protein A-gold complex (Sigma, P-1039 diluted at 1:6) for 30 min at 37°C.

  4. (iv)

    Rinse the strips extensively with PBS after each treatment; mount the slides in 10% glycerine and view the strips under a light microscope with a blue filter.

Appendix 11: Detection of Potato virus Y (PVY) by Immunohistochemistry Method (Ryang et al. 2004)

  1. (i)

    Immerse the sampled plant tissues immediately in fixative consisting of 50% ethanol, 5% acetic acid and 3.7% formalin.

  2. (ii)

    Dehydrate and infiltrate the tissues in a graded series of ethanol solutions – 50%, 70%, 90% and 100% each for 30 min and embed them in paraffin (Paraplast-plus, Sigma).

  3. (iii)

    Cut sections of 12 μm thick of stem tissue using a rotary microtome and place them on glass slides.

  4. (iv)

    Dewax the sections in xylene and wash in 100% ethanol.

  5. (v)

    Dehydrate in a graded series of ethanol (70%, 50% and 30%) and distilled water for 10 min each.

  6. (vi)

    Incubate the sections in PBST and 1% BSA for 1 h and then incubate with PVY-CP-specific antibody diluted to 1:200 in PBST/BSA for 2 h at 37°C.

  7. (vii)

    Incubate the sections with alkaline phosphatase-conjugated goat anti-rabbit IgG (Sigma) diluted to 1:200 in PBST/BSA for 2 h at 37°C.

  8. (viii)

    Wash the sections and stain with BCIP/NBT liquid substrate system.

  9. (ix)

    Wash the stained sections in distilled water and observe under the microscope.

Appendix 12: Detection of Grapevine leaf roll-associated virus 3 (GLRaV-3) by Electron Microscopic Decoration Technique (Cogotzi et al. 2009)

  1. (i)

    Crush the tissues infected by target virus in 0.1 M phosphate buffer, pH 7.2 containing 2% nicotine.

  2. (ii)

    Sensitize the carbon grids by floating on drops of rabbit IgG capable of recognizing GLRaV-1, GLRaV-3 and GLRaV-7 or purified CL-LR3 diluted in 0.1 M phosphate buffer, pH 7.2 for 1 h at 37°C.

  3. (iii)

    Wash the grids with buffer; float the grids on drops of plant tissue extracts at 4°C for 48 h to allow trapping of target virus particles.

  4. (iv)

    For virus decoration, rinse pre-coated grids exposed to the antibodies described above or CL-LR3 diluted in PBS.

  5. (v)

    Allow reaction of CL-LR3 with antibodies conjugated with alkaline phosphatase (CLAP) diluted to1:50 and wash thrice with PBS.

  6. (vi)

    Negatively stain the trapped and decorated virus particles with 2% uranyl acetate and examine under transmission electron microscope (TEM).

Appendix 13: Detection of Grapevine fan leaf virus (GFLV) by RT-PCR Assay (Bashir and Hajizadeh 2007)

2.13.1 Extraction of Total RNA

  1. (i)

    Incubate 200 mg leaf tissue sample in 1 ml cold extraction buffer consisting of 91 mM K2HPO4, 30 mM KH2PO4, 292 mM sucrose, 0.22 mM bovine serum albumin (BSA) fraction II, 0.8 mM PVP 25, 30 mM ascorbic acid, pH 7.6 in a mortar for 20 min; grind well; add 1 ml more of extraction buffer and grind to get a homogenous extract.

  2. (ii)

    Centrifuge at 1,050 g for 4 min; transfer the supernatant to a fresh 1.5 ml tube; centrifuge at 16,800 g for 10 min; discard the supernatant and dissolve the pellet in 50 mM Tris, pH 8.0 containing 10 mM EDTA, 0.1% ß-mercaptoethanol and 1.25% SDS and incubate for 10 min at 60°C.

  3. (iii)

    Add 80 μl 5 M potassium acetate; place the tube on ice for 30 min and centrifuge for 15 min at 16,800 g.

  4. (iv)

    Transfer the supernatant to a fresh tube; add 0.1 volume of 3 M sodium acetate and 1 volume of ice-cold isopropanol; keep the tube for 1 h at −20°C and centrifuge at 16,800 g for 30 min.

  5. (v)

    Wash the pellet with 200 μl 80% ethanol; dry and suspend in 30 μl sterile distilled water.

2.13.2 Synthesis of First Strand cDNA

  1. (i)

    Incubate 2.5 μl aliquot containing 50 pmol oligo d(T)16, 1.0 μl RNA and 1.1 μl RNAase-free water at 70°C for 5 min and chill immediately on ice.

  2. (ii)

    Add 7.5 μl of reverse transcription mix containing 1 × reverse transcription buffer (Fermentas, Lithuania), 10 mM of each dNTP, 10 U RNAase inhibitor and 100 U M-MuLV reverse transcriptase (Fermentas) and incubate at room temperature for 15–20 min, followed by incubation at 42°C for 60 min.

  3. (iii)

    Stop the reaction by heating at 70°C for 10 min.

2.13.3 Polymerase Chain Reaction (PCR)

  1. (i)

    Use appropriate pairs of primers (S2515/A3300 and CP433V/912C).

  2. (ii)

    Dispense 12.5 μl PCR mix containing 2 mM magnesium chloride, 0.5 pmol each of the primer, 1 × Taq DNA polymerase buffer, 0.3 U Taq DNA polymerase (Fermentas) and 2.5 μl of cDNA.

  3. (iii)

    Provide the following thermocycling conditions:

For S2515/A3300 primer set: one cycle at 94°C for 1 min, followed by 35 cycles of 94°C for 30 s, 40 or 50°C for 30 s, 72°C for 60 s and finally one cycle of 72°C for 10 min.

For CP433V/912C primer set: same as for S2515/A3300 primer set, except performing annealing at 40°C or 48°C for 45 s and extension at 72°C for 45 s.

Appendix 14: Detection of Strawberry Viruses by Multiplex RT-PCR Assay (Chang et al. 2007)

2.14.1 Total Nucleic Acid Extraction

  1. (i)

    Grind 0.05 g leaves in a mortar with liquid nitrogen; transfer the powdered tissue to a microfuge tube containing 500 μl CTAB buffer consisting of 2% CTAB, 100 mM Tris, pH 8.0, 20 mM EDTA, 1.4 M NaCl; add 2% ß-mercaptoethanol just before use and incubate for 20 min at 65°C.

  2. (ii)

    Extract the suspensions with chloroform/isoamyl alcohol (24:1) twice and separate the phases by spinning.

  3. (iii)

    Add 1/10 volume NaAc, pH 5.2 and 2.5 volume ethanol to water phase; mix well; remove the pellet; wash with 70% ethanol and dry on a clean bench.

  4. (iv)

    Resuspend in 50 μl of DEPC (diethylpyrocarbonate) water.

2.14.2 Extraction of Total RNA

  1. (i)

    Follow the steps A(i) and A(ii) above.

  2. (ii)

    Add ¼ volume 10 M LiCl to water phase; precipitate RNA at −20°C for 60 min; redissolve the precipitate in TE buffer and extract with phenol/chloroform/isoamylalcohol and chloroform/isoamylalcohol successively.

  3. (iii)

    Precipitate RNA; wash twice; dry on a clean bench and resuspend in 30 μl DEPC water.

2.14.3 Reverse Transcription (RT) Reaction

  1. (i)

    Incubate 30–50 ng (1 μl) of total RNA or 90–130 ng (1 μl) of total nucleic acid extract in 11.5 μl of sterile distilled water plus 1 μl of dNTPs (each 2.5 mM), 0.5 μl random primer (9-mer) (50 μM) and 0.5 μl oligo d(T)18 (50 μM) (TaKaRa, Japan) at 65°C for 5 min.

  2. (ii)

    Add 4 μl buffer 5 × (TaKaRa, Japan), 0.5μl RNasin and 1 μl AMV (5 U/μl) TaKaRa, Japan) and incubate at 37°C for 2.5 h.

  3. (iii)

    Inactivate the enzyme by incubating at 70°C for 15 min.

2.14.4 Polymerase Chain Reaction (PCR)

  1. (i)

    Use primer pairs Y1/Y2 for Strawberry mild yellow edge virus (SMYEV), D1/D3 for Strawberry mottle virus (SMoV) and I2/SM2 for Strawberry vein banding virus (SVBV).

  2. (ii)

    Use single PCR reaction mixture containing 1 μl of first strand cDNA, 1 × PCR buffer, 0.2 mM dNTPs, 0.2 μM each primer, 1 U Taq polymerase in a total volume of 20 μl.

  3. (iii)

    Provide the following conditions for amplification:

For Y1/Y2 or D1/D3 primer pair: initial denaturation step at 94°C for 2 min, followed by 35 cycles at 94°C for 30 s, 55°C for 30 s and 72°C for 30 s and final elongation at 72°C for 5 min.

For I2/SM2 primer pair set: initial denaturation step at 94°C for 3 min, followed by 35 cycles at 94°C for 30 s, 55°C for 60 s, and 72°C for 2 min and final elongation at 72°C for 5 min.

2.14.5 Duplelx PCR Assay

  1. (i)

    For SMYEV and SMoV use reaction mixture containing 1μl of first strand cDNA, 2 × PCR buffer, 0.2 mM dNTPs, 0.27 μM D1/D3 primers, 1 U Taq polymerase in a total volume of 20 μl.

  2. (ii)

    Provide the following cycling conditions: denaturation step at 94°C for 2 min, followed by 35 cycles at 94°C for 30 s, 57°C for 40 s and 66°C for 2 min and final elongation at 72°C for 5 min.

2.14.6 Multiplex PCR Assay

  1. (i)

    For SMYEV, SMoV and SVBV, use reaction mixture containing 1μl of first strand cDNA, 2 × PCR buffer, 0.2 mM dNTPs, 1 U Taq polymerase and use primer concentration 0.17 μM D1/D3, 0.25 μM I2/SM2 and 0.15 μM Y1/Y2 in a total volume of 20 μl.

  2. (ii)

    Provide the following cycling conditions: initial denaturation step at 94°C for 2 min, followed by 35 cycles at 94°C for 30 s, 55°C for 40 s and 68°C for 2.5 min and final elongation step at 72°C for 5 min.

  3. (iii)

    For duplex and multiplex assays, resolve the PCR products by electrophoresis in 1.5% agarose gels in 1 × TBE buffer and after staining with ethidium bromide visualize under UV light.

Appendix 15: Detection of Pepino mosaic virus (PepMV) by Multiplex One-Step RT-PCR Assay (Alfaro-Fernández et al. 2009)

2.15.1 Extraction of Total Nucleic Acids

  1. (i)

    Place 0.5–0.6 g of leaf tissue in a sample bag (Agadia, USA) suitable for use on a Homex grinder (Bioreba, USA) and homogenize with 5 ml of lysis buffer consisting of 4 M guanidine isothiocyanate, 0.2 M sodium acetate, pH 5.0, 25 mM EDTA, 2.5% PVP-40 (w/v) and 1% 2-mercaptoethanol (v/v) (added just before use).

  2. (ii)

    Transfer the homogenate (1 ml) to a graduated microfuge tube using a disposable plastic transfer pipette; mix with 100 μl 20% sarkosyl (w/v) and incubate at 70°C for 10 min with agitation (1,200 rpm) using an Eppendorf thermometer.

  3. (iii)

    Transfer approximately 600–650 μl homogenate to QIA Shredder (Qiagen) column using a new disposable plastic pipette and centrifuge at 14,000 × g for 2 min in an Eppendorf microcentrifuge.

  4. (iv)

    Transfer 25 μl of column flowthrough to a new 1.5 ml microfuge tube; mix with 225 μl 95% ethanol; load onto an RNeasy (Qiagen) column and centrifuge at 8,000 × g for 45 s.

  5. (v)

    Discard the flowthrough; apply 700 μl RW1 buffer (Qiagen) to the column and wash thoroughly by centrifugation at 8,000 × g for 15 s.

  6. (vi)

    Transfer the column to a clean 2 ml collection tube; apply 500 μl RPE buffer (Qiagen) to the column and wash through by centrifugation at 8,000 × g for 15 s.

  7. (vii)

    Discard the flowthrough; apply additional 0.5 ml RPE buffer to the column and centrifuge at 14,000 × g for 5 min to remove all traces of ethanol.

  8. (viii)

    Transfer the column to a new 1.5 ml microfuge tube and elute RNA by applyi ng 100 ml RNA-free water and centrifuge at 8,000 × g for 1 min.

  9. (ix)

    Label the collection tubes appropriately and store the RNA samples at −80°C till use for RT-PCR assay.

2.15.2 Primers Employed

  1. (i)

    Select specific region of the RNA polymerase gene for identification of PepMV isolates; three specific primers – PepMV-DEP, PepMV-D1 and PepMV-D2 – and a common antisense primer (PepMV-R) for differentiation of EU/PE, CH1/US1 and CH2/US2 groups of PepMV respectively.

2.15.3 RT-PCR Assay

  1. (i)

    Perform RT-PCR reaction using the SuperScript III one-step RT-PCR system with Platinum Taq DNA polymerase kit (Invitrogen Life Technologies, Spain); use a mixture of all primers at a final concentration of 0.25 pmol/μl and the primers of internal control Rbc1 gene at 0.05 pmol/μl corresponding to the partial sequence of ribulose 1,5-biphosphate carboxylase chloroplast gene.

  2. (ii)

    Provide the following conditions for amplification: initial incubation at 50°C for 30 min, followed by 94°C for 2 min and 40 cycles of 94°C for 15 s, 50°C for 30 s and 68°C for 1 min and a final incubation at 68°C for 10 min.

  3. (iii)

    Resolve the amplified PCR products by electrophoresis, using 1.2% agarose/TAE gels stained with ethidium bromide.

  4. (iv)

    To confirm the viral origin of the amplified fragment, purify them with High Pure PCR Product Purification Kit (Roche Diagnostics, Germany) and directly sequence the amplicons.

  5. (v)

    Digest 10 μl of PCR amplicon directly with SacI enzyme (MBI Fermentas, Lithuania) in a total volume of 20 μl as per the manufacturer’s recommendations.

  6. (vi)

    Analyze the digestion products in a 5% TAE polyacrylamide gel followed by staining with ethidium bromide.

Appendix 16: Detection of Orchid Viruses by Multiplex RT-PCR Assay (Lee and Chang 2006)

2.16.1 Simplex RT-PCR Assay

  1. (i)

    Extract total RNA and viral RNA from plant tissues using Plant Total RNA Extraction Miniprep System (Viogene, USA) as per the manufacturer’s instructions.

  2. (ii)

    Use primer pair CymMV CP-F1/CymMV CP-R1, ORSV CP-F1/ORSV CP-R1 and mt-F2/mt-R1 for the amplification of Cymbidium mosaic virus Odontoglossum ringspot virus and the internal control respectively.

  3. (iii)

    For RT reaction with a total volume of 12 μl, mix 2 μl extracted plant total RNA (200 ng) with/without viral RNA, with 0.5 μl of 5 μM reverse primer, CymMV CP-R1, ORSV CP-R1 or mt-R1; add 5μl double distilled (dd) water; heat the solution for 10 min at 70°C and cool immediately on ice for 5 min.

  4. (iv)

    Add RT mixture containing 3.25 μl dd water, 2.5 μl 5 × first strand buffer (Promega, USA), 1.2 μl dNTPs (10 mM), 0.25 μl rRNasin (40 U/μl) (Promega) and 0.25 μl AMV reverse transcriptase (10 U/μl, Promega) and incubate at 42°C for 60 min.

  5. (v)

    For PCR use 20 μl reaction volume containing 2 μl RT product, 2 μl 10 × DyNAzymeTM II DNA polymerase buffer (Finnzymes Inc., Finland), 2 μl forward and reverse primers 5 μM CymMV CP-F1/CymMV CP-R1, ORSV CP-F1/ORSV CP-R1 or mt-F2/mt-R1, 2 μl dNTPs (2 mM), 0.4 μl DyNAzymeTM II DNA polymerase (2 U/μl, Finnzymes Inc.) and 11.6 μl dd water.

  6. (vi)

    Perform amplification providing the following conditions: initial denaturation at 96°C for 5 min, followed by 30 cycles of 96°C for 30 s, 50°C for 30 s, 72°C for 30 s, and a final extension step at 72°C for 7 min.

  7. (vii)

    Analyze the PCR products on agarose gels by electrophoresis, as described in subdivision C below.

2.16.2 Multiplex RT-PCR Assay

  1. (i)

    Perform RT reaction in the same manner as described above except that the three reverse primers- CymMV CP-R1, ORSV CP-R1 and mt-R1 are to be added simultaneously.

  2. (ii)

    Carry out PCR with 20 μl volume comprising of 11.6 μl dd water, 2 μl of 10 × DyNAzymeTM II polymerase buffer, 2 μl multiplex primer set (including 2.5 μM mt-F2/mt-R1, 1.25 μM CymMV CP-F1/CymMV CP-R1, 1.25 μM ORSV CP-F1/ORSV CP-R1), 2 μl dNTPs (2 mM); mix 0.4 μl DyNAzymeTM DNA polymerase and assay in the same PCR conditions.

  3. (iii)

    Analyze the PCR products on agarose gels after electrophoresis as in subdivision C below.

2.16.3 Agarose Gel Electrophoresis

  1. (i)

    Resolve aliquots of 10 μl of RT-PCR products in 2% agarose gel in TAE buffer consisting of 40 mM Trisacetate and 1 mM EDTA.

  2. (ii)

    Stain the gel with ethidium bromide (05 μg/ml) and illuminate with UV light.

  3. (iii)

    Determine the fragment sizes with Kodak Digital ScienceTM ID image analysis software (Eastman Kodak Co., USA) by comparison with DNA molecular weight markers (Invitrogen, USA).

Appendix 17: Detection of Orchid Viruses by Multiplex RT-PCR Assay Using Simple-Direct-Tube (SDT) Method for RNA Extraction (Suehiro et al. 2005; Yamane et al. 2008)

2.17.1 Extraction of Total RNA by SDT Method

  1. (i)

    Grind 0.1 g infected leaves in 0.3 ml of phosphate-buffered saline (PBS) containing 0.05% Tween-20 (PBST); transfer 50 μl crude sap to a polypropylene PCR tube (0.5 ml) using a truncated tip (cut 5 mm of the top portion) and incubate for 15 min at room temperature.

  2. (ii)

    Remove the crude sap using a truncated tip; wash twice with 50 μl PBST; add 30 μl diethylpyrocarbonate water to the tube and incubate at 95°C for 1 min and cool on ice.

  3. (iii)

    Use the RNA solution for RT-PCR assay.

2.17.2 Multiplex RT-PCR Assay

  1. (i)

    Use the primer pair CymMV-5034F/CymMV-5189R for CymMV and primer pair ORS CP-F/ORS CP-R for ORSV.

  2. (ii)

    Use the reaction mixture containing a total 5 μl consisting of 2.375 μl RNA solution, 0.25 μl of 5 μM reverse primer, 1 μl 5 mM MgCl2, 0.5 μl 10 × RT buffer, 0.5 μl dNTP mixture, 0.125 μl RNase inhibitor and 0.25 μl AMV reverse transcriptase; incubate for 30 min at 50°C, 5 min at 99°C and 5 min at 5°C.

  3. (iii)

    Perform PCR amplification with 5 μl 5 × PCR buffer, 0.25 μl of 5 μM forward primer, 0.125 μl TaKaRa Taq HS and 14.5 μl sterile distilled water added to the cDNA solution.

  4. (iv)

    Heat the tubes at 94°C for 2 min; provide 35 cycles of amplification-denaturation at 94°C for 30 s, annealing at 58°C for 30 s and extension at 72°C for 30 s.

  5. (v)

    Mix aliquots of 8 μl amplicon with 2 μl 5 × loading buffer; electrophorese in 4% agarose gel in Tris-acetate-EDTA (TAE) buffer at 100 V for 40 min; include a DNA ladder as molecular weight markers.

  6. (vi)

    Stain the gels with ethidium bromide and photograph on UV transilluminator.

Appendix 18: Detection of Pepper Tobamoviruses by Immunocapture (IC)-RT-PCR Assay (Kim et al. 2006)

2.18.1 Double Antibody Sandwich (DAS)-ELISA

  1. (i)

    Coat the microtiter plates (Polystyrene plates, Costar) with 100 μl/well of IgG diluted to 1 ng/ml in coating buffer, pH 9.6 at 37°C for 3 h and wash the wells with PBS-T three times for 3 min each.

  2. (ii)

    Add 150 μl plant extract to each well; incubate overnight at 4°C and wash for three times as done earlier with PBS-T.

  3. (iii)

    Add 100 μl IgG-enzyme conjugate; incubate for 3 h at 37°C and wash as done before.

  4. (iv)

    Add 100 μl of substrate (1 μg/ml of p-nitrophenylphosphate in 10% diethanolamine, pH 9.8) to each well.

  5. (v)

    Record absorbance values at 405 nm using microplate reader.

2.18.2 Immunocapture RT-PCR Assay

  1. (i)

    Coat microtubes (200 μl) with 50 μl antibodies to both viruses [Pepper mild mottle virus (PMMoV) and Tobacco mild green mosaic virus (TMGMV)] at 1 μg/ml for each tube; incubate at 37°C for 2 h and wash the tubes three times with PBS-T.

  2. (ii)

    Add 50 μl leaf extract or purified virus preparation to each tube; incubate for 2–3 h at 37°C or overnight at 4°C and remove the solution by pipetting; add 80 μl of PBS-T/tube; centrifuge and remove the wash solution by pipetting.

  3. (iii)

    Wash with PBS-T and finally with deoinized water.

  4. (iv)

    Perform RT-PCR procedure using ‘AccessQuick RT-PCR Kit (Promega); add reaction mix to microtubes after washing them; reaction mix contains: 12.5 μl mastermixture, 0.5 μl AMV reverse transcriptase; 1 μl (10 pmole) of each primer and nuclease-free distilled water up to a final volume of 25 μl.

  5. (v)

    Use appropriate primers (PM317-F/PM317-R for PMMoV; CPTMG-F/CPTMG-R for TMGMV) and centrifuge briefly.

  6. (vi)

    Carry out the RT reaction with one cycle at 42°C for 45 min and 35 cycles of PCR amplification using the step program: 95°C for 45 s; 50°C for 50 s; 72°C for 60 s, followed by final extension at 72°C for 10 min.

Appendix 19: Detection of Florida hibiscus virus by Immunocapture (IC)-RT-PCR Assay (Kamenova and Adkins 2004)

  1. (i)

    Coat sterile 0.6 ml polypropylene microcentrifuge tubes with 100 μl of virus specific IgG (1 mg/ml diluted in 0.05 sodium carbonate buffer, pH 9.6); incubate for 3 h at 37°C and wash three times with PBST in 200 μl/tube.

  2. (ii)

    Homogenize healthy and virus-infected plant tissues in ELISA sample buffer and centrifuge at 10,000 × g for 10 min at 4°C.

  3. (iii)

    Prepare suitable dilutions of supernatants and virion preparations; dispense 100 μl aliquots to the coated tubes; incubate overnight at 4°C and wash three times with PBST as done before.

  4. (iv)

    Design suitable specific primer pairs; synthesize first strand cDNA by Moloney murine leukemia virus reverse transcriptase using 200 U/μl (Promega, USA) at 47°C for 45 min in the buffer provided by the manufacturer.

  5. (v)

    Provide the following conditions: 30 cylces of PCR amplification with Taq polymerase (50 U/μl; Promega) at 94°C for 1 min, 59°C for 1 min and 72°C for 1 and 30 s in the manufacturer’s buffer.

  6. (vi)

    Analyze the amplified products by electrophoresis on native 2% agarose gels and detect the bands by ethidium bromide staining.

Appendix 20: Detection of Potato virus Y (PVY) by PCR-ELISA Test (Hataya et al. 1994; Varveri 2000)

  1. (i)

    Precipitate the PCR product using ethanol; dissolve in TNE buffer (10 mM Tris–HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, pH 8.0) and denature by heating.

  2. (ii)

    Dilute the denatured product by 200-fold in 10 × SSC (1 × SSC: 15 mM NaCl, 0.015 M sodium citrate, pH 7.0) – 10 mM EDTA, pH 7.0 directly into the microplate wells; incubate for 2 h at 37°C and wash three times with PBS + Tween-20.

  3. (iii)

    Fill each well with 100 μl hybridization solution consisting of 5 × SSC, 10 mM EDTA, pH 7.0, ).1% Tween-20; 50% formamide containing heat-denatured DIG-labeled probe at a dilution of 1:500; incubate at 42°C for 12 h and wash three times.

  4. (iv)

    Fill the wells with 100 μl alkaline-phosphatase-conjugated anti-DIG antibody (Boehringer Mannheim); incubate for 1 h at 37°C and wash three times.

  5. (v)

    Add p-nitrophenyl phosphate substrate at 1 mg/ml diethanolamine and incubate for 2 h.

  6. (vi)

    Record the absorbance values at 405 nm with a colorimeter (Dynatech MR 5000).

Appendix 21: Detection of Plum pox virus (PPV) by Spot Real-Time PCR Assay (Capote et al. 2009)

2.21.1 Preparation of Crude Extracts

  1. (i)

    Collect five to eight spurts or dards with dormant or swelling buds/tree in the winter and five to eight spurs or shoots with fully expanded leaves/tree in the following spring; grind the winter samples in plastic bags containing a heavy net (Plant Print Diagnostics, Valencia) using a hammer in the presence of 1:20 (w/v) sodium diethyldithiocarbamate and process the spring samples also in the same buffer in plastic bags containing a soft net (Bioreba), using the Homex-6 machine (Bioreba).

  2. (ii)

    Prepare serial dilutions of the extract from PPV-infected peach seedling with the extract of healthy seedling.

2.21.2 Spot Real-Time PCR Assay

  1. (i)

    Load 5 μl of crude extract onto 0.45 μm positively charged nylon membrane (Roche) or on Whatman 3 MM paper filter.

  2. (ii)

    Provide the reaction cocktail for SYBR Green chemistry: 1 × Power SYBR Green Master Mix (Applied Biosystems), 6.25 units of MultiScribe reverse transcriptase (Applied Biosystems), 10 U of RNase inhibitor, 0.3 μM primer P1, 0.05 μM primer P2.

  3. (iii)

    Provide RT-PCR variables as follows: 48°C for 30 min, 95°C for 10 min, 45 cycles of amplification at 95°C for 15 s and 60°C for 1 min.

  4. (iv)

    Prepare a melting point curve for temperatures between 60°C and 95°C.

  5. (v)

    Perform analysis using an ABI Prism 7000 and StepOnePlus software packages (Applied Biosystems).

Appendix 22: Detection of Strawberry vein banding virus (SVBV) by Real-Time NASBA Technique (Vašková et al. 2004)

2.22.1 Extraction of Nucleic Acids

  1. (i)

    Place leaves in extraction bags containing sample extraction buffer (1:10 ratio, w/v) consisting of 0.14 M NaCl, 2 mM KCl, 2 mM KH2PO4 8 mM Na2HPO4.2H2O, pH 7.4), 0.05% Tween-20 (v/v), 2% polyvinylpyrrolidone 40, 0.2% ovalbumin (w/v), 0.5% BSA (w/v) and 0.05% sodium azide and homogenize with the Bioreba HOMEX 6 homogenizer

  2. (ii)

    Transfer 100 μl of the homogenized solution for extraction of nucleic acids by the RNeasy Plant Mini Kit or DNeasy Plant Mini Kit (Qiagen, Germany)

  3. (iii)

    Elute the RNA in 100 μl RNase-free water and store at −60°C.

  4. (iv)

    Elute DNA in 200 μl low salt DNeasy dilution buffer and store at −20°C.

2.22.2 Real-Time Nucleic Acid Sequence-Based Amplification (NASBA)

  1. (i)

    Use appropriate primer pair and probe for amplification of template present in the purified preparations or plant tissue extracts containing nucleic acids.

  2. (ii)

    Add 3 μl sample to 12 μl NASBA premixture (final concentration in 20 μl reaction mixture: 40 mM Tris–HCl, pH 8.5, 0.5 mM DTT, 12 mM KCl, 15% DMSO (v/v), 1 mM dNTPs, 2 mM each of ATP, UTP and CTP, 1.5 mMGTP and 0.5 mM ITP, 0.2 μM of each primer).

  3. (iii)

    Add 9 ng molecular beacons for each reaction; carry out denaturation of the mixture at 65°C for 5 min and adjust the temperature to 41°C for 5 min.

  4. (iv)

    Add pre-mixed enzymes, 375 mM sorbitol, 21 μg BSA, 0.08 U RNase H, 32 U T7 RNA polymerase and 6.4 U AMV-RT (BioMerieux BV, the Netherlands) and incubate at 41°C for 90 min.

  5. (v)

    Perform real-time measurement using the iCycler iQTM (Real-time PCR Detection System, Bio-Rad, USA) and excite the fluorophore at 575 nm.

  6. (vi)

    Determine fluorescence emission at 620 nm at 2 min interval.

  7. (vii)

    Separate 3 μl NASBA amplification product using a nondenaturing gel electrophoresis; and blot on Z-probe nylon membrane.

  8. (viii)

    Hybridize to SVBV-specific biotinylated probe (Bio1) and visualize using enhanced chemi-luminescent (ECL) detection (Amersham Pharmacia Biotech).

  9. (ix)

    Expose the membrane to x-ray film.

Appendix 23: Detection and Differentiation of Citrus tristeza virus (CTV) Isolates by Single-Strand Conformation Polymorphism Analysis (Sambade et al. 2002)

2.23.1 cDNA Synthesis

  1. (i)

    Use ds-RNA enriched preparations for cDNA synthesis by RT-PCR as the template and specific primers for genes p18, p13 p20 and p23 to be designed using the sequences conserved in CTV isolates T36, VT and T385.

  2. (ii)

    Perform RT-PCR in an A20 air thermal cycler (Idaho Technologies, USA) using a reaction mixture (25 μl) containing 20 mM Tris–HCl, pH 8.4, 50 mM KCl, 3 mM MgCl2, 4 mM each of dATP, dCTP, dGTP, and dTTP, 500 μg/ml BSA, 1 μM primers, 4 U RNase OUT, 20 U SuperScript II reverse transcriptase (RT) and 1 U Taq DNA polymerase (Life Technologies, USA).

  3. (iii)

    Provide the following cycling conditions: reverse transcription for 30 min at 46°C, RT inactivation at 94°C for 2 min, 40 cycles of 94°C for 5 s, 55°C for 5 s, 72°C for 30 s and final extension at 72°C for 2 min.

  4. (iv)

    Analyze the cDNA by electrophoresis on 2% agarose gel.

2.23.2 Single-Strand Conformation Polymorphism (SSCP) Analysis

  1. (i)

    Mix 1 μl PCR amplicon with 9 μl of denaturing solution consisting of 95% formamide, 20 mM EDTA, pH 8.0, 0.05% bromophenol blue and 0.05% xylene-cyanol; heat at 90°C for 10 min and immediately chill the mixture on ice.

  2. (ii)

    Separate the DNA strands by electrophoresis in a nondenaturing polyacrylamide minigel (8% acrylamide) using TBE containing 89 mM Tris–borate, pH 8.2, 2 mM EDTA as electrophoresis buffer and a constant voltage of 300 V for 1.5 h or 200 V for 3 h at 4°C.

  3. (iii)

    Stain the gels with silver nitrate.

Appendix 24: Isolation of ds RNA of Plant Viruses (Zhang et al. 1998)

  1. (i)

    Freeze plant tissues (leaf, petiole or root) in liquid nitrogen; grind to a fine powder using a pestle and mortar and extract with a mixture of 14 ml 1 × STE (containing 0.05 M Tris pH 6.8), M NaCl and 1 mM EDTA, 2 ml 10% sodium dodecyl sulfate (SDS), 1 ml 2% bentonite and 18 ml 2 × STE-saturated phenol.

  2. (ii)

    Shake the extract well for 30 min; centrifuge for 15 min at 8,000 rpm and add ethanol to have 16.5% concentration.

  3. (iii)

    Pass through a cellulose column (Whatman CF-11) that binds ds-RNA; wash thoroughly with 1 × STE buffer at 16.5% ethanol and elute from the column with 1 × STE.

  4. (iv)

    Precipitate from the eluate with 1/10 volume of 3 M sodium acetate and 2. 5 volumes of ethanol and resuspend the precipitate in 50 μl water.

  5. (v)

    Electrophorese half of the above preparation through a 6% polyacrylamide gel and stain with ethidium bromide (1 μg/ml).

  6. (vi)

    Visualize the bands under UV light.

Appendix 25: Detection of Plant RNA Viruses by Macroarray Technique (Agindotan and Perry 2007)

2.25.1 Extraction of Total RNA from Plants

  1. (i)

    Extract total RNA from samples of 200 mg of leaf tissues using RNeasy Plant Mini Kit (Qiagen) as per the manufacturer’s instructions.

  2. (ii)

    Estimate the RNA concentration at 260 nm using a spectrophotometer.

2.25.2 Probes for Target cDNAs

  1. (i)

    Design probes (ca. 70 nts) based on the sequences of target viruses (CMV, PVY and PLRV).

  2. (ii)

    Evaluate virus specificity of each oligonucleotides using the Basic Local Alignment Search Tool (BLAST).

  3. (iii)

    Use commercially synthesized oligonucleotides (Integrated DNA Techno­logies, USA).

2.25.3 Printing of Oligonucleotide Probes on Membranes

  1. (i)

    Dilute the ribosomal and virus-specific DNA oligonucleotide probes to 10 and 20 μM respectively in 1 × spotting buffer containing 4 mM sodium carbonate buffer, pH 8.3, 3 × SSC (consisting of 0.15 M NaCl and 0.15 M sodium citrate), 50% dimethyl sulfoxide (DMSO), 0.01% N-laroylsarcosine and 1 mg bromophenol blue.

  2. (ii)

    Transfer the probes in 30 μl aliquots into the wells of a polypropylene 384-well microtiter plate (Nalge Nune International, NY) and a clean pin replicator (V & P Scientific Inc., USA) for 384-well plates as per manufacturer’s recommendations.

  3. (iii)

    Cut the Hybond-N Plus membrane (GE Healthcare Biosciences Corp, USA) to the size (12 × 10 mm pieces) of a multiprint device (V & P Scientific) and copier unit (V & P Scientific) aligned over the 384-well plate.

  4. (iv)

    Print the oligonucleotide probes on a membrane on the same spots twice (pin replicator delivers ca. 0.2 μl per print); allow 5 min for air-drying the membrane before the second printing and fix the printed oligonucleotides onto the membrane by UV-cross-linking for 2 min at 120 mJ/s.

2.25.4 Labeling and Hybridization

  1. (i)

    Use the labeling kit (AlkPhos Direct labeling kit, GE Healthcare Bio-Sciences Corp) as per the manufacturer’s recommendations.

  2. (ii)

    Wet the membrane by incubating in 0.5% sodium dodecylsulfate (SDS) (w/v) at 55°C for 1 h followed by a rinse in 0.1 M Tris–HCl, pH 8.4 for 5 min.

  3. (iii)

    Perform prehybridization and hybridization at 55°C using the protocol suggested by AlkPhos Direct kits in 50-ml polypropylene tubes.

  4. (iv)

    Use 10 ml of hybridization buffer for every 20–25 cm2 with 200 ng labeled target DNA for prehybridization; use only 5 ml of the buffer for hybridization with 200 ng labeled target DNA and perform hybridization at 55°C overnight.

  5. (v)

    Wash the membranes twice in a primary wash buffer containing 2 M urea, 0.1% SDS, 50 mM sodium phosphate, 150 mM NaCl and 0.2% blocking agent supplied with the kit at 55°C for 15 min each, followed by washing in a secondary wash buffer containing 50 mM Tris–HCl, 100 mM NaCl, pH 10 for 10 min at room temperature on a shaker.

  6. (vi)

    Incubate the membranes with CDP-Star chemiluminescent (GE-Healthcare Bio-Sciences Corp) reagent for 5 min; drain and expose to chemiluminescence BioMax film (Kodak Co, NY) for 1 h to overnight.

Appendix 26: Detection of Peach latent mosaic viroid (PLMVd) by Hybridization Techniques (Hadidi et al. 1997)

2.26.1 Extraction of Total Nucleic Acids

  1. (i)

    Powder the leaf tissue sample (0.2 g) with liquid nitrogen; extract in TE buffer consisting of 10 mM Tris–HCl, 1 mM Na2 EDTA, pH 8.0; treat with an equal volume of phenol/chloroform (1:1) for 15–20 min and centrifuge at 3,000 rpm for 5 min at 4°C.

  2. (ii)

    Precipitate the nucleic acids from the supernatant by adding 0.1 volume of 3 M sodium acetate, pH 5.3 and 2.5 volumes of absolute ethanol; keep the mixture at −70°C for at least 2 h and centrifuge at 12,000 rpm for 10 min at 4°C.

  3. (iii)

    Resuspend the pellet in TE buffer; concentrate the total nucleic acids with 20% polyethylene glycol (PEG) 6,000 and 2.5 M NaCl solution; add distilled water to make up the volume to 100 μl; incubate in ice water for 1 h and centrifuge at 12,000 rpm for 20 min in a microcentrifuge.

  4. (iv)

    Wash the pellet once in 70% ethanol; dry in vacuo and dissolve in 20 μl deionized water.

2.26.2 Dot Blot Hybridization

  1. (i)

    Mix 10 μl total nucleic acids of each sample with 10 μl 20 × SSC/formaldehyde solution (3:2, v/v) [1 × SSC = 0.015 M sodium citrate and 0.15 M NaCl, pH 7.0]; keep the mixture at 65°C for 30 min and chill the mixture on ice for 2 min.

  2. (ii)

    Blot 20 μl of each mixture on a wet 0.45 μM Nytran membrane (Schleicher and Schuell) that have been soaked in a 6 × SSC solution; place the membrane on a minifold apparatus under vacuum and wash with 200 μl 6 × SSC solution.

  3. (iii)

    Cross-link to the membrane by irradiation in a UV cross-linker.

2.26.3 Northern (RNA) Blot Hybridization

  1. (i)

    Mix 50 μl of total nucleic acids of each sample with 50 μl 20% PEG 6,000 and 100 μl water; keep on the ice for 1 h and centrifuge at 12,000 rpm for 10 min at 4°C in microcentrifuge.

  2. (ii)

    Wash the pellet with 70% ethanol; dry under vacuum; resuspend in 10 μl TE buffer.

  3. (iii)

    Load 10 μl of PEG-precipitated total nucleic acids on a 6% polyacrylamide gel and electrophoresce for 1.5 h.

  4. (iv)

    Wash the gel with 1 × TAE ( 40 mM Tris–HCl, pH 8.0, 20 mM sodium acetate and 2 mM EDTA) for 10 min; electrotransfer to a TAE-equilibrated 0.2 μm Nytran membrane at 0.5 A for 14 h at 4°C.

  5. (v)

    Cross-link to the membrane by irradiation in UV cross-linker.

Appendix 27: Detection of Coconut cadang-cadang viroid (CCCVd) by Dot Blot Hybridization Technique (Vadamalai et al. 2009)

2.27.1 Extraction of Nucleic Acids Enriched with the Viroid

  1. (i)

    Blend the chopped leaf samples (10–20 g) in 120 ml chilled 100 mM NaSO3; filter through cotton muslin; shake vigorously for 30 min at 4°C with polyvinyl pyrrolidone (20 g/l); mix vigorously with 50 ml chloroform for 5 min and centrifuge at 10,000 × g for 4 min.

  2. (ii)

    Add polyethylene glycol (PEG) (80 g/l) to the supernatant; dissolve by stirring at 4°C and collect the precipitate after centrifugation as done earlier.

  3. (iii)

    Extract the nucleic acids by resuspending the precipitate in 2 ml of SDS (10 g/l); add 2 ml aqueous phenol (900 g/l) containing 8-hydroxyquinoline (1 g/l) and shake vigorously.

  4. (iv)

    Collect the upper phase after centrifugation at 10,000 g for 10 min; reextract with 1 ml phenol and 1 ml chloroform for 5 min; add NaCl to 0.1 M; add cetyltrimethyl ammonium bromide (CTAB) (3.3 g/l) and incubate for 30 min on ice.

  5. (v)

    Centrifuge at 10,000 × g for 10 min; wash the pellet with 0.1 M sodium acetate in 75% ethanol and once with 100% ethanol and air-dry.

  6. (vi)

    Resuspend the pellet in 500 μl sterile double distilled water (SDDW) ; add an equal volume of 4 M LiCl; incubate the mixture at 4°C for 15–18 h and centrifuge at 12,000 × g for 15 min.

  7. (vii)

    Recover LiCl-soluble component; add 2.5 volumes of ethanol; allow the mixture to stand for 2–3 h; collect the precipitate by centrifugation at 12,000 g for 15 min; air-dry the pellet; resuspend the precipitate in 500 μl SDDW and store at −20°C.

2.27.2 Dot Blot Hybridization Assay

  1. (i)

    Cut leaf samples (1 g) into 50 mm lengths; crush in a plastic bag with 2 ml buffer (2 M NaCl, 100 mM sodium acetate, 10 mM EDTA, 50 mM Tris–HCl, pH 7.5 and 0.1% monothioglycerol) and extract 0.5 ml aliquots with 1% SDS and phenol-chloroform-isoamyl alcohol.

  2. (ii)

    Precipitate nucleic acids with isopropanol; wash the pellets with 95% ethanol; air-dry and redissolve in sterile water.

  3. (iii)

    Apply 1 μl samples (at different dilutions 1, 1/10 and 1/100) to nylon membrane (Zeta-Probe, Bio-Rad, USA) and cross-link by UV irradiation.

  4. (iv)

    Prehybridize the membranes at 65°C for 1 h in buffer containing 5 × SSC (750 mM NaCl, 75 mM sodium citrate, pH 7), 2.5% SDS, 0.3% PVP 40 and 100 μg/ml autoclaved herring sperm DNA.

  5. (v)

    Exchange the buffer for the same buffer containing 160 pmoles/ml of an oligonucleotide probe labeled with digoxingenin at the 5′ terminus; perform the hybridization at 65°C for 3 h; then at 40°C for 45 h.

  6. (vi)

    Wash the membrane sequentially in 3 × SSC, 2.5% SDS for 15 min at 38°C; 0.5 × SSC, 2.5% SDS for 15 min at 35°C; then 0.2 × SSC, 1% SDS for 15 min at 60°C.

  7. (vii)

    Block the membranes and detect the DIG-labeled probe with commercial monoclonal antibodies-phosphatase-conjugated antibody and substrate.

Appendix 28: Detection of Coconut cadang-cadang viroid (CCCVd) by Ribonuclease Protection Assay (Vadamalai et al. 2009)

  1. (i)

    Use a complementary sense RNA (cRNA) probe labeled with 32P transcribed from a pGEM®-T Easy vector (Promega Corp, USA) containing a monomeric insert of the 246-nt form of CCCVd.

  2. (ii)

    Precipitate the nucleic acids from leaf samples (5 g from oil palm or 1 g from coconut) with three volumes of ethanol in the presence of 0.1 M sodium acetate; air-dry the pellets; resuspend in 30 μl hybridization buffer containing 80% formamide, 40 mM PIPES (1,4-piperazine-diethanesulphonic acid), pH 6.5, 400 mM NaCl, 1 mM EDTA, pH 8.0, probe (2 × 105 c.p.m); heat for 10 min at 95°C and incubate at 55°C for 12–18 h.

  3. (iii)

    Include a tube containing 100 μg cRNA from wheat germ (Sigma, Australia) as negative control.

  4. (iv)

    Add to each tube, 350 μl digestion buffer consisting of 300 mM NaCl, 10 mM Tris, pH 7.5 and 5 mM EDTA, pH 8.0 containing 10 μg/ml of RNAse A and 10 U/ml RNAse T1 (Roche) and incubate at 30°C for 1 h.

  5. (v)

    Stop the RNAse digestion by adding 10 μl of 20% SDS and 2.5 μl of proteinase K (10 mg/l) (Amresco, USA) to each tube and incubate at 37°C for 20 min.

  6. (vi)

    Add tRNA to a final concentration of 0.025 μg/μl and 400 μl of phenol-chloroform-isoamyl alcohol mix (1:1) followed by final extraction.

  7. (vii)

    Transfer 300 μl from the supernatant to a new tube; precipitate the nucleic acid with three volumes of ethanol at −70°C for 30 min and collect the pellet by centrifugation.

  8. (viii)

    Resuspend the pellets in 10 μl of denaturing loading buffer consisting of 0.25% bromophenol blue, 0.25% xylene cyanol, 10 mM sodium EDTA, pH 8.0 and 80% formamide; heat for 5 min at 95°C and chill on ice.

  9. (ix)

    Fractionate by 5% denaturing PAGE (8 M urea) at 40 mA for 1 h; fix the gel for 10 min in 0.5% acetic acid and 10% ethanol and wash once with double-distilled water.

  10. (x)

    Transfer to a wet sheet of 3-mm Whatman filter paper; dry for 2 h at 80°C in a gel dryer (Bio-Rad) and autoradiograph at −70°C for 1–72 h with an intensifying screen.

Appendix 29: Extraction of Citrus Viroids for Multiplex RT-PCR Assay (Wang et al. 2009)

2.29.1 Extraction of Total Nucleic Acids

  1. (i)

    Place the 5–10 mg samples (leaf, bark, fruit skin or root tissues) in 1.5 ml Eppendorf tubes immersed in liquid nitrogen ; grind the tissues with sterile plastic pestle (Bio-Rad); homogenize with 60 μl TES buffer [100 mM Tris–HCl, 2 mM EDTA and 2% SDS (w/v)] and 60 μl of a mixture composed of water saturated phenol/chloroform/isoamyl alcohol (25:24:1, v/v/v); incubate in a water bath at 70°C for 5–10 min; centrifuge at 12,000 × g for 5–10 min.

  2. (ii)

    Make a hole at the bottom of a 0.5 ml Eppendorf tube using a hot 25 gauge needle; add a small quantity of glass beads (425–600 μM, Sigma) maintained in TNE buffer (10 mM Tris–HCl, 100 mM NaCl, 1 mM EDTA) for covering the hole in the tube; fill this minicolumn with a slurry of Sephadex G50-80 ) (Amersham Biosciences) pre-equilibrated with the above TNE buffer; place inside a 2.2-ml centrifuge tube and centrifuge at 5,000 × g for 3 min to pack the matrix.

  3. (iii)

    Place this packed minicolumn into a sterile 1.5-ml Eppendorf tube; transfer 40 μl of the aqueous phase of the extract (from step (i) above) into the matrix, discarding the pellet and centrifuge the mini-column at 5,000 × g for 4 min to retrieve the eluate (about 20–80 μl).

  4. (iv)

    Use this total nucleic acid extract directly for RT-PCR or store at −20°C for periods up to 1 year.

  5. (v)

    Assess the purity of RNA extracted using a spectrophotometer and determine the OD260/OD280 ratio (ranging from 1.6 to 1.8).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Narayanasamy, P. (2011). Detection of Virus and Viroid Pathogens in Plants. In: Microbial Plant Pathogens-Detection and Disease Diagnosis:. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9754-5_2

Download citation

Publish with us

Policies and ethics