Skip to main content

A Unified Variational Setting and Algorithmic Framework for Mono- and Polycrystalline Martensitic Phase Transformations

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

The unified setting presented here is based on phase transformations (PTs) of monocrystalline shape memory alloys (SMAs) and includes polycrystalline SMAs whose microstructure is modeled using lattice variants of RVEs consisting of equal convex isotropically elastic grains. A pre-averaging scheme for randomly distributed polycrystalline variants of PT-strains is used transforming them into those of a fictitious monocrystal. A major point is the overall finite element based integration algorithm in time and space for both mono- and polycrystalline PTs with differences only on the material level, whereas the parametric time integration with quasi-convexification and the solution algorithm in space remains the same. Examples for full PT cycles and comparisons with experiment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, 2003.

    MATH  Google Scholar 

  2. J.L. Ericksen (Ed.), The Cauchy and Born Hypothesis for Crystals, Academic Press, 1984.

    Google Scholar 

  3. M. Huang and L.C. Brinson, A multivariant model for single crystal shape memory alloys behavior, Journal of the Mechanics and Physics of Solids 46, 1998, 1379–1409.

    Article  MATH  MathSciNet  Google Scholar 

  4. G.J. Hall and S. Govindjee, Application of the relaxed free energy of mixing to problems in shape memory alloy simulation, Journal of Intelligent Material Systems Structures 13, 2002, 773–782.

    Article  Google Scholar 

  5. S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: Formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg. 191, 2001, 215–238.

    Article  MATH  Google Scholar 

  6. E. Stein and O. Zwickert, Theory and finite element computations of a unified cyclic phase transformation model for monocrystalline materials at small strains, Comput. Mech. 40, 2007, 429–445.

    Article  MATH  Google Scholar 

  7. E. Stein and G. Sagar, Theory and finite element computation of cyclic martensitic phase transformation at finite strain, Int. J. Numer. Meth. Engng. 74(1), 2008, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Huang, X. Gao and L.C. Brinson, A multivariant micromechanical model for SMAS. Part 2. Polycrystal model, Int. J. Plasticity 16, 2000, 1371–1390.

    Article  Google Scholar 

  9. K. Hackl and R. Heinen, A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy, Continuum Mech. Thermodyn. 19, 2008, 499– 510.

    Article  MATH  MathSciNet  Google Scholar 

  10. F.A. Nae, Y. Matsuzaki and T. Ikeda, Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling, Smart Mater. Struct. 12, 2003, 6–17.

    Article  Google Scholar 

  11. L.C. Brinson, R. Lammering and I. Schmidt, Stress induced transformation behaviour of a polycrystalline NiTi shape memory alloy: Micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids 52, 2004, 1549–1572.

    Article  MATH  Google Scholar 

  12. Y. Jung, P. Papadopoulos and R.O. Ritchie, Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys, Int. J. Num. Methods Engrg. 60, 2004, 429–460.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Siredey, E. Patoor, M. Berveiller and A. Eberhardt, Constitutive equations for polycrystalline thermoelastic shape memory alloys. Part I: Intergranular interactions and behavior of the grain, Int. J. Solids Struct. 36, 1999, 4289–4315.

    Article  MATH  Google Scholar 

  14. R. Abeyaratne, S. Kim and J. Knowels, A one-dimensional continum model for shape memory alloys, Int. J. Solids Structures 31, 1994, 2229–2249.

    Article  MATH  Google Scholar 

  15. S. Govindjee, A. Mielke and G.J. Hall, The free-energy of mixing for n-variant martensitic phase transformations using qausi-convex analysis, J. Mech. Phys. Solids 52, 2003, I–XXVI.

    Article  Google Scholar 

  16. J.M. Ball and R.D. James, Fine phase mixtures and minimizers of energy, Arch. Rat. Mech. Anal. 100, 1987, 13–52.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Stein and G. Sagar, Convergence behavior of 3-D finite elements for Neo-Hookean material models using Abaqus-Umat, Int. J. Computer-Aided Engrg. Software 25(3), 2008, 220–232.

    Article  Google Scholar 

  18. R. Lammering and A. Vishnevsky, Investigation of local strain and temperature behaviour of superelastic NiTi wires, in Proceedings of the First Seminar on the Mechanics of Multifunctional Materials, Rep. No. 5, 2007, pp. 77–82.

    Google Scholar 

  19. K.B. Gilleo, Photon-conducting media alignment using a thermokinetic material, US Patent 6863447, http://www.patentstorm.us/patents/6863447/fulltext.html, 2005.

  20. Z. Xiangyang, S. Qingping and Y. Shouwen, A non-invariant plane model for the interface in cualni single crystal shapememory alloys, J. Mech. Phy. Solids 48, 2000, 2163–2182.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Stein, E., Sagar, G. (2010). A Unified Variational Setting and Algorithmic Framework for Mono- and Polycrystalline Martensitic Phase Transformations. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics