Skip to main content
Log in

Theory and finite element computations of a unified cyclic phase transformation model for monocrystalline materials at small strains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

After a survey the refined numerical treatment and verification is presented for a rate-independent macroscopic unified PT material model (including mass conservation with respect to phase fractions and covexified free energy) by Govindjee and Miehe (Comput Methods Appl Mech Eng 191:215–238, 2001) for describing SME and SE effects within a linear kinematic setting. Special attention is given to temperature dependent PTs. The material model was implemented into ABAQUS via the UMAT material interface in 2004. Validation of this PT model is carried out with experimental data supplied by Xiangyang et al. (J Mech Phys Solids 48:2163–2182, 2000), using 3D finite element computations. Experimentally gained material data from different sources are used and numerical results of energy barriers for PTs are given. Another feature is the simulation of suppressed shape memory effects by quasiplastic temperature induced PT. Furthermore, a plane strain problem is treated with comparisons of butterfly shaped expansions of martensitic PT and plastic deformation, correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball JM, James RD (1987) Fine phase mixtures and minimizers of energy. Arch Rat Mech Anal 100:13–52

    Article  MATH  MathSciNet  Google Scholar 

  2. Bhattacharya K (2003) Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Carstensen C (2005) Ten remarks on nonconvex minimisation for phase transition simulations. Comput Methods Appl Mech Engrg 194:169–193

    Article  MATH  MathSciNet  Google Scholar 

  4. Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Methods Appl Mech Engrg 191:215–238

    Article  MATH  Google Scholar 

  5. Govindjee S, Mielke A, Hall GJ (2003) The free-energy of mixing for n-variant martensitic phase transformations using qausi-convex analysis. J Mech Phys Solids 52:I–XXVI

    Article  Google Scholar 

  6. Hall GJ, Govindjee S (2002) Application of the relaxed free energy of mixing to problems in shape memory alloy simulation. J Intell Material Syst Struct 13:773–782

    Article  Google Scholar 

  7. Howard G, Shield TW (1995) Orientation dependence of the pseudoelastic behavior of single crystals of Cu–Al–Ni in tension. J Mech Phys Solids 43:869–895

    Article  Google Scholar 

  8. Levitas VI, Idesman AV, Stein E (1998) Finite element simulation of martensitic phase transitions in elastoplastic materials. Int J Solids Struct 35:855–887

    Article  MATH  Google Scholar 

  9. Mielke A, Theil F, Levitas VI (2002) A variational formulation of rate-independent phase transformations using extremum principle. Arch Rational Mech Anal 162:137–177

    Article  MATH  MathSciNet  Google Scholar 

  10. Patoor E, Eberhardt A, Berveiller M (1995) Micromechanical modelling of superelasticity in shape memory alloys. J Phys IV C8-5:277–292

    Google Scholar 

  11. Stein E (ed) (2003) Error-controlled adaptive finite elements in solid mechanics. Chichester [u.a]: Wiley, New York

  12. Uebel A (2002) Untersuchung des thermischen und Mechanischen Hystereseverhaltens von einkristallinen Cu82Al14Ni4-Formgedächtnislegierungen. Dissertation an der Fakultät III - Prozesswissenschaften der Universität Berlin

  13. Winzek B (2000) Entwicklung, Herstellung und Charakterisierung von Mikroaktoren mit Formgedaechtnisschichten auf der Basis von TiNi. Dr.-Ing. thesis at Institut fuer Materialforschung, Programm Mikrosystemtechnik, Forschungszentrum Karlsruhe GmbH, Wissenschaftliche Berichte FZKA 6467

  14. Xiangyang Z, Qingping S, Shouwen Y (2000) A non-invariant plane model for the interface in cualni single crystal shape memory alloys. J Mech Phy Solids 48:2163–2182

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, E., Zwickert, O. Theory and finite element computations of a unified cyclic phase transformation model for monocrystalline materials at small strains. Comput Mech 40, 429–445 (2007). https://doi.org/10.1007/s00466-006-0118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0118-x

Keywords

Navigation