Skip to main content
Log in

A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present a micromechanical model for polycrystalline shape-memory alloys which is capable of reproducing important aspects of the material behavior such as pseudoelasticity, pseudoplasticity, tension–compression asymmetry and the influence of texture inhomogeneities which may occur from the production process of components or specimens. Our model is based on the optimization of the material’s free energy density and uses a dissipation ansatz which is homogeneous of first order. Considering the full anisotropic material properties of both the austenite and the martensite phase, we compute the evolution of the orientation distributions of austenite and martensite as internal variables of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M. and James R.D. (1987). Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100: 13–52

    Article  MATH  MathSciNet  Google Scholar 

  2. Bhattacharya and K. (2003). Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-memory Effect. Oxford University Press, New York

    Google Scholar 

  3. Bhattacharya K. and Kohn R. (1996). Symmetry, texture and the recoverable strain of shape-memory polycrystals. Acta Mater. 44: 529–542

    Article  Google Scholar 

  4. Carstensen C., Hackl K. and Mielke A. (2002). Nonconvex potentials and microstructure in finite-strain plasticity. Proc. R. Soc. Lond. A 458: 299–317

    Article  MATH  MathSciNet  Google Scholar 

  5. Carstensen C. and Plechd́fc̆ P. (2001). Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. M2AN Math. Model. Numer. Anal. 35: 865–878

    Article  MATH  MathSciNet  Google Scholar 

  6. Dacorogna B. (1982). Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46: 102–118

    Article  MATH  MathSciNet  Google Scholar 

  7. Govindjee S., Hackl K. and Heinen R. (2007). An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodyn. 18: 443–453

    Article  MathSciNet  MATH  Google Scholar 

  8. Govindjee S. and Miehe C. (2001). A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput. Methods Appl. Mech. Eng. 191: 215–238

    Article  MATH  Google Scholar 

  9. Grabe, C., Bruhns, O.T.: Tension/torsion tests of pseudoelastic, polycrystalline NiTi shape memory alloys under temperature control. Mat. Sci. Eng. A, doi:10.1016/j.msea.2007.03.117 (2007)

    Google Scholar 

  10. Hackl K. and Fischer F.D. (2008). On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464: 117–132

    Article  MATH  MathSciNet  Google Scholar 

  11. Hackl, K., Heinen, R., Schmahl, W.W., Hasan, M.: Experimental verification of a micromechanical model for polycrystalline shape memory alloys in dependence of martensite orientation distributions. Mat. Sci. Eng. A. doi:10.1016/j.msea.2006.10.218 (2007)

    Google Scholar 

  12. Hackl K. and Hoppe U. (2003). On the calculation of microstructures for inelastic materials using relaxed energies. In: Miehe, C. (eds) Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pp 77–86. Kluwer, Boston

    Google Scholar 

  13. Hackl K., Schmidt-Baldassari M. and Zhang W. (2004). A micromechanical model for polycrystalline shape-memory alloys. Mater. Sci. Eng. A 378: 503–506

    Article  Google Scholar 

  14. Heinen R. and Hackl K. (2007). On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Methods Appl. Mech. Eng. 196: 2401–2412

    Article  MathSciNet  Google Scholar 

  15. Huo Y. and Müller I. (1993). Nonequilibrium thermodynamics of pseudoelasticity. Contin. Mech. Thermodyn. 5: 163–204

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohn R. (1991). The relaxation of a double-well problem. Contin. Mech. Thermodyn. 3: 193–236

    Article  MATH  MathSciNet  Google Scholar 

  17. Mielke A. (2003). Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15: 351–382

    Article  MATH  MathSciNet  Google Scholar 

  18. Mielke A., Theil F. and Levitas V.I. (2002). A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rat. Mech. Anal. 162: 137–177

    Article  MATH  MathSciNet  Google Scholar 

  19. Moreau J.J. (1963). Fonctionelles sous-différentiables. C. R. Acad. Sci. Paris, Série A 257: 4117–4119

    MATH  MathSciNet  Google Scholar 

  20. Ortiz M. and Repetto E.A. (1999). Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47: 397–462

    Article  MATH  MathSciNet  Google Scholar 

  21. Ortiz M. and Stainier L. (1999). The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171: 419–444

    Article  MATH  MathSciNet  Google Scholar 

  22. Otsuka K. and Wayman C.M. (1999). Shape Memory Materials. Cambridge University Press, Cambridge

    Google Scholar 

  23. Roubf́8ček, T.: Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin (1997)

  24. Sedlák P., Seiner H., Landa M., Novák V., Sittner P. and Mañosa Ll. (2005). Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy. Acta Mater. 53: 3643–3661

    Article  Google Scholar 

  25. Schmahl W.W., Khalil-Allafi J., Hasse B., Wagner M., Heckmann A. and Somsen Ch. (2004). Investigation of the phase evolution in a super-elastic NiTi shape memory alloy (50.7 at.%Ni) under extensional load with synchrotron radiation. Mater. Sci. Eng. A 378: 81–85

    Article  Google Scholar 

  26. Smyshlyaev V. and Willis J. (1998). On the relaxation of a three-well energy. Proc. R. Soc. Lond. A 455: 779–814

    MathSciNet  Google Scholar 

  27. Frenzel, J., Pfetzing, J., Neuking, K., Eggeler, G.: On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys. Mat. Sci. Eng. A, doi:10.1016/j.msea.2007.03.115 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Heinen.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackl, K., Heinen, R. A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19, 499–510 (2008). https://doi.org/10.1007/s00161-008-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0067-z

Keywords

PACS

Navigation