Skip to main content

Minimizing movements and level set approaches to nonlocal variational geometric flows

  • Conference paper
Geometric Partial Differential Equations proceedings

Part of the book series: CRM Series ((CRMSNS,volume 15))

Abstract

This contribution describes recent results on a variational approach for the geometric gradient flow of perimeter-like functionals, which include a class of non-local perimeters. In particular, the consistency of the variational approach with viscosity solutions of an appropriate level set equation is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Almgren, J. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim 31 (1993), 387–438.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Barchiesi, S. H. Kang, M. L. Triet, M. Morini and M. Ponsiglione, A variational model for infinite perimeter segmentations based on Lipschitz level set functions: denoising while keeping finely oscillatory boundaries, Multiscale Model. Simul. 8 (2010).

    Google Scholar 

  3. L. A. Caffarelli, J.-M. Roquejoffre and O. Savin, Non-local minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111–1144.

    MATH  MathSciNet  Google Scholar 

  4. L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, ARMA 195 (2010).

    Google Scholar 

  5. P. Cardaliaguet, Front propagation problems with nonlocal terms, II, J. Math. Anal. Appl. 260 (2001), 572–601.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2004), 195–218.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Chambolle, A. Giacomini and L. Lussardi, Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal. 44 (2010), 207–230.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows, International Journal of Computer Vision 84 (2009), 288–307.

    Article  Google Scholar 

  9. A. Chambolle, M. Morini and M. Ponsiglione, A non-local mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal. 44 (2012), 4048–4077.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Chambolle, M. Morini and M. Ponsiglione, Nonlocal variational curvature flows, Work in progress.

    Google Scholar 

  11. Chen, Y.-G., Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Di. Geom. 33 (1991).

    Google Scholar 

  12. L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Di Geom. 33 (1991).

    Google Scholar 

  13. C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound 11 (2009).

    Google Scholar 

  14. H. Ishii and P. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. (2) 47 (1995), 227–250.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3 (1995), 253–271.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Anal. 52 (2003), 79–115.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Valdinoci, A fractional framework for perimeters and phase transitions, preprint 2012.

    Google Scholar 

  18. A. Visintin, Nonconvex functionals related to multiphase systems, SIAM J. Math. Anal. 21 (1990), 1281–1304.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Visintin, Generalized coarea formula and fractal sets, Japan J. Indust. Appl. Math. 8 (1991), 175–201.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Chambolle, A., Morini, M., Ponsiglione, M. (2013). Minimizing movements and level set approaches to nonlocal variational geometric flows. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds) Geometric Partial Differential Equations proceedings. CRM Series, vol 15. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-473-1_4

Download citation

Publish with us

Policies and ethics