Skip to main content

Variational Methods in Shape Analysis

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

The concept of a shape space is linked both to concepts from geometry and from physics. On one hand, a path-based viscous flow approach leads to Riemannian distances between shapes, where shapes are boundaries of objects that mainly behave like fluids. On the other hand, a state-based elasticity approach induces a (by construction) non-Riemannian dissimilarity measure between shapes, which is given by the stored elastic energy of deformations matching the corresponding objects. The two approaches are both based on variational principles. They are analyzed with regard to different applications, and a detailed comparison is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. B. Unione Mat. Ital. B 6(7), 105–123 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Ball, J.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. 88A, 315–328 (1981)

    Article  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  4. Berkels, B., Linkmann, G., Rumpf, M.: An SL(2) invariant shape median (2009, submitted)

    Google Scholar 

  5. Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75(2), 135–152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Monographs in Computer Science. Springer, New York (2008)

    MATH  Google Scholar 

  7. Burger, M., Osher, S.J.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. 5(1), 1–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Charpiat, G., Faugeras, O., Keriven, R., Maurel, P.: Distance-based shape statistics. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, vol. 5, pp. 925–928 (2006)

    Google Scholar 

  12. Chen, S.E., Parent, R.E.: Shape averaging and its applications to industrial design. IEEE Comput. Graph. Appl. 9(1), 47–54 (1989)

    Article  Google Scholar 

  13. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Volume 4 of Texts in Applied Mathematics. Springer, New York (1990)

    Google Scholar 

  14. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: 3D brain mapping using a deformable neuroanatomy. Phys. Med. Biol. 39(3), 609–618 (1994)

    Article  Google Scholar 

  15. Ciarlet, P.G.: Three-Dimensional Elasticity. Elsevier Science B.V., New York (1988)

    MATH  Google Scholar 

  16. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models–their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  17. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognit. 36, 1929–1943 (2003)

    Article  MATH  Google Scholar 

  18. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Dambreville, S., Rathi, Y., Tannenbaum, A.: A shape-based approach to robust image segmentation. In: Campilho, A., Kamel, M. (eds.) IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York. Volume 4141 of LNCS, pp. 173–183 (2006)

    Google Scholar 

  20. Delfour, M.C., Zolésio, J.: Geometries and Shapes: Analysis, Differential Calculus and Optimization. Advance in Design and Control, vol. 4. SIAM, Philadelphia (2001)

    Google Scholar 

  21. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Google Scholar 

  22. Droske, M., Rumpf, M.: Multi scale joint segmentation and registration of image morphology. IEEE Trans. Pattern Recognit. Mach. Intell. 29(12), 2181–2194 (2007)

    Article  Google Scholar 

  23. Dupuis, D., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Eckstein, I., Pons, J.P., Tong, Y., Kuo, C.C., Desbrun, M.: Generalized surface flows for mesh processing. In: Eurographics Symposium on Geometry Processing, Barcelona (2007)

    Google Scholar 

  25. Elad (Elbaz), A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Google Scholar 

  26. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on Lie groups. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, vol. 1. pp. 95–101 (2003)

    Google Scholar 

  27. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  28. Fletcher, T., Venkatasubramanian, S., Joshi, S.: Robust statistics on Riemannian manifolds via the geometric median. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage (2008)

    Google Scholar 

  29. Fletcher, P., Whitaker, R.: Riemannian metrics on the space of solid shapes. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2006, Copenhagen (2006)

    Google Scholar 

  30. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 215–310 (1948)

    Google Scholar 

  31. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35(1), 86–102 (2009)

    Article  Google Scholar 

  32. Fuchs, M., Scherzer, O.: Segmentation of biologic image data with a-priori knowledge. FSP report, Forschungsschwerpunkt S92 52, Universität Innsbruck, Innsbruck (2007)

    Google Scholar 

  33. Fuchs, M., Scherzer, O.: Regularized reconstruction of shapes with statistical a priori knowledge. Int. J. Comput. Vis. 79(2), 119–135 (2008)

    Article  Google Scholar 

  34. Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  35. Hafner, B., Zachariah, S., Sanders, J.: Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia. Med. Biol. Eng. Comput. 38, 9–16 (2000)

    Article  Google Scholar 

  36. Hong, B.W., Soatto, S., Vese, L.: Enforcing local context into shape statistics. Adv. Comput. Math. (online first) (2008)

    Google Scholar 

  37. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Suppl. 1), 151–160 (2004)

    Article  Google Scholar 

  38. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(64), 1–8 (2007)

    Google Scholar 

  41. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  42. Klingenberg, W.P.A.: Riemannian Geometry. Walter de Gruyter, Berlin (1995)

    Book  MATH  Google Scholar 

  43. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: 5th IEEE EMBS International Summer School on Biomedical Imaging, Berder Island (2002)

    Google Scholar 

  44. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  45. Liu, X., Shi, Y., Dinov, I., Mio, W.: A computational model of multidimensional shape. Int. J. Comput. Vis. (online first) (2010)

    Google Scholar 

  46. Manay, S., Cremers, D., Hong, B.W., Yezzi, A.J., Soatto, S.: Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Article  Google Scholar 

  47. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  48. McNeill, G., Vijayakumar, S.: 2d shape classification and retrieval. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, pp. 1483–1488 (2005)

    Google Scholar 

  49. Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: Workshop on Non-rigid Shape Analysis and Deformable Image Alignment (CVPR Workshop, NORDIA’08), Anchorage (2008)

    Google Scholar 

  50. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5, 313–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  51. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Michor, P.W., Mumford, D., Shah, J., Younes, L.: A metric on shape space with explicit geodesics. Rend. Lincei Mat. Appl. 9, 25–57 (2008)

    MathSciNet  Google Scholar 

  53. Miller, M., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  54. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)

    Article  MATH  Google Scholar 

  55. Modica, L., Mortola, S.: Un esempio di-Γ -convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

    Google Scholar 

  56. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 2, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  57. Nečas, J., Čsilhavý, M.: Multipolar viscous fluids. Q. Appl. Math. 49(2), 247–265 (1991)

    MATH  Google Scholar 

  58. Ogden, R.W.: Non-linear Elastic Deformations. Wiley, New York (1984)

    Google Scholar 

  59. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Volume 153 of Applied Mathematical Sciences. Springer, New York (2003)

    Google Scholar 

  60. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  61. Pennec, X.: Left-invariant Riemannian elasticity: a distance on shape diffeomorphisms? In: Mathematical Foundations of Computational Anatomy – MFCA 2006, Copenhagen, pp. 1–14 (2006)

    Google Scholar 

  62. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Palm Springs. LNCS, pp. 943–950 (2005)

    Google Scholar 

  63. Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4d statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J., Gerig, G. (eds.) Medical Image Computing and Computer Assisted Intervention, Palm Springs. Volume 3750 of LNCS, pp. 402–410 (2005)

    Google Scholar 

  64. Rathi, Y., Dambreville, S., Tannenbaum, A.: Statistical shape analysis using kernel PCA. Proc. SPIE 6064, 425–432 (2006)

    Google Scholar 

  65. Rathi, Y., Dambreville, S., Tannenbaum, A.: Comparative analysis of kernel methods for statistical shape learning. In: Beichel, R., Sonka, M. (eds.) Computer Vision Approaches to Medical Image Analysis, Graz. Volume 4241 of LNCS, pp. 96–107 (2006)

    Google Scholar 

  66. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  67. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2(3), 800–833 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  68. Rumpf, M., Wirth, B.: An elasticity approach to principal modes of shape variation. In: Proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM 2009), Voss. Volume 5567 of LNCS, pp. 709–720 (2009)

    Google Scholar 

  69. Rumpf, M., Wirth, B.: An elasticity-based covariance analysis of shapes. Int. J. Comput. Vis. (2009, accepted)

    Google Scholar 

  70. Schmidt, F.R., Clausen, M., Cremers, D.: Shape matching by variational computation of geodesics on a manifold. In: Pattern Recognition, Berlin. Volume 4174 of LNCS, pp. 142–151. Springer, Berlin (2006)

    Google Scholar 

  71. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  72. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings of the Shape Modeling International, Genova, pp. 167–178 (2004)

    Google Scholar 

  73. Söhn, M., Birkner, M., Yan, D., Alber, M.: Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys. Med. Biol. 50, 5893–5908 (2005)

    Article  Google Scholar 

  74. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 1. Publish or Perish, Boston (1970)

    Google Scholar 

  75. Srivastava, A., Jain, A., Joshi, S., Kaziska, D.: Statistical shape models using elastic-string representations. In: Narayanan, P. (ed.) Asian Conference on Computer Vision, Hyderabad. Volume 3851 of LNCS, pp. 612–621. Springer, Heidelberg (2006)

    Google Scholar 

  76. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)

    Article  Google Scholar 

  77. Thorstensen, N., Segonne, F., Keriven, R.: Pre-image as karcher mean using diffusion maps: application to shape and image denoising. In: Proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM 2009), Voss. Volume 5567 of LNCS, pp. 721–732 (2009)

    Google Scholar 

  78. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (2004)

    Book  Google Scholar 

  79. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22(2), 137–154 (2003)

    Article  Google Scholar 

  80. Vaillant, M., Glaunès, J.: Surface matching via currents. In: IPMI 2005: Information Processing in Medical Imaging, Glenwood Springs. Volume 3565 of LNCS, pp. 381–392. Springer (2005)

    Google Scholar 

  81. Wirth, B.: Variational methods in shape space. Dissertation, University Bonn, Bonn (2009)

    Google Scholar 

  82. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: Geodesics in shape space via variational time discretization. In: Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR’09), Bonn. Volume 5681 of LNCS, pp. 288–302 (2009)

    Google Scholar 

  83. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space (2010, submitted to IJCV)

    Google Scholar 

  84. Yezzi, A.J., Mennucci, A.: Conformal metrics and true “gradient flows” for curves. In: ICCV 2005: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, pp. 913–919 (2005)

    Google Scholar 

  85. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  86. Younes, L., Qiu, A., Winslow, R.L., Miller, M.I.: Transport of relational structures in groups of diffeomorphisms. J. Math. Imaging Vis. 32(1), 41–56 (2008)

    Article  MathSciNet  Google Scholar 

  87. Yushkevich, P., Fletcher, P.T., Joshi, S., Thalla, A., Pizer, S.M.: Continuous medial representations for geometric object modeling in 2d and 3d. Image Vis. Comput. 21(1), 17–27 (2003)

    Article  Google Scholar 

  88. Zolésio, J.P.: Shape topology by tube geodesic. In: IFIP Conference on System Modeling and Optimization, No. 21, pp. 185–204 (2004)

    Google Scholar 

Download references

Acknowledgements

The model proposed in section “Viscous Fluid-Based Shape Space” has been developed in cooperation with Leah Bar and Guillermo Sapiro from the University of Minnesota. Benedikt Wirth has been funded by the Bonn International Graduate School in Mathematics. Furthermore, the work was supported by the Deutsche Forschungsgemeinschaft, SPP 1253 “Optimization with Partial Differential Equations.” Part of Figs. 34 and 1923 have been taken from [83], the results from Figs. 6, 8, and 1018 stem from [67, 69].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rumpf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Rumpf, M., Wirth, B. (2015). Variational Methods in Shape Analysis. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_56

Download citation

Publish with us

Policies and ethics