Skip to main content

Variational Methods for Discrete Geometric Functionals

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

While consistent discrete notions of curvatures and differential operators have been widely studied, the question of whether the resulting minimizers converge to their smooth counterparts still remains open for various geometric functionals. Building on tools from variational analysis, and in particular using the notion of Kuratowski convergence, we offer a general framework for treating convergence of minimizers of (discrete) geometric functionals. We show how to apply the resulting machinery to minimal surfaces and Euler elasticae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibert, J.J., Della Corte, A., Giorgio, I., Battista, A.: Extensional Elastica in large deformation as Γ-limit of a discrete 1D mechanical system. Z. Angew. Math. Phys. 68(2), Art. 42, 19 (2017)

    Google Scholar 

  2. Alibert, J.J., Della Corte, A., Seppecher, P.: Convergence of Hencky-type discrete beam model to Euler inextensible elastica in large deformation: rigorous proof. In: Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69, pp. 1–12. Springer, Singapore (2017)

    Google Scholar 

  3. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford University Press, Oxford (2004)

    Google Scholar 

  4. Banchoff, T.: Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1, 257–268 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, U., Polthier, K., Wardetzky, M.: Uniform convergence of discrete curvatures from nets of curvature lines. Discrete Comput. Geom. 43(4), 798–823 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, M., Harms, P., Michor, P.W.: Almost local metrics on shape space of hypersurfaces in n-space. SIAM J. Imaging Sci. 5, 244–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer, M., Harms, P., Michor, P.W.: Curvature weighted metrics on shape space of hypersurfaces in n-space. Differ. Geom. Appl. 30(1), 33–41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space, II: weighted Sobolev metrics and almost local metrics. J. Geom. Mech. 4(4), 365–383 (2012)

    MATH  Google Scholar 

  10. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparametrization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

    Article  MATH  Google Scholar 

  11. Bauer, M., Bruveris, M., Michor, P.W.: Why use Sobolev metrics on the space of curves. In: Turaga, P., Srivastava, A. (eds.) Riemannian Computing in Computer Vision, pp. 223–255. Springer, Cham (2016)

    Google Scholar 

  12. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)

    Google Scholar 

  13. Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164(1), 231–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.: Discrete Differential Geometry. Oberwolfach Seminars. Birkhäuser, Basel (2008)

    Google Scholar 

  15. Borrelli, V., Cazals, F., Morvan, J.M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des. 20(6), 319–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruckstein, A.M., Netravali, A.N., Richardson, T.J.: Epi-convergence of discrete elastica. Appl. Anal. 79(1–2), 137–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bruveris, M.: Completeness properties of Sobolev metrics on the space of curves. J. Geom. Mech. 7(2), 125–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bruveris, M., Michor, P.W., Mumford, D.: Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2, e19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bücking, U.: Minimal surfaces from circle patterns: boundary value problems, examples. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G. (eds.) Discrete Differential Geometry, pp. 37–56. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  20. Cheeger, J., Müller, W., Schrader, R.: Curvature of piecewise flat metrics. Commun. Math. Phys. 92, 405–454 (1984)

    Article  MATH  Google Scholar 

  21. Cohen-Steiner, D., Morvan, J.M.: Restricted Delaunay triangulations and normal cycle. In: Symposium on Computational Geometry, pp. 312–321 (2003)

    Google Scholar 

  22. Cohen-Steiner, D., Morvan, J.M.: Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 73(3), 363–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crane, K., Wardetzky, M.: A glimpse into discrete differential geometry. Not. Am. Math. Soc. 64(10), 1153–1159 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dal Maso, G.: An introduction to Γ-convergence. In: Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser, Boston (1993)

    Google Scholar 

  25. Dierkes, U., Hildebrandt, S., Tromba, A.J.: Regularity of minimal surfaces. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 340, 2nd edn. Springer, Heidelberg (2010)

    Google Scholar 

  26. Douglas, J.: Solution of the problem of plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

    Chapter  Google Scholar 

  28. Dziuk, G., Hutchinson, J.E.: The discrete plateau problem: algorithm and numerics. Math. Comput. 68, 1–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dziuk, G., Hutchinson, J.E.: The discrete plateau problem: convergence results. Math. Comput. 68, 519–546 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Español, M.I., Golovaty, D., Wilber, J.P.: Euler elastica as a γ-limit of discrete bending energies of one-dimensional chains of atoms. Math. Mech. Solids (2017)

    Google Scholar 

  31. Fu, J.H.: Convergence of curvatures in secant approximations. J. Differ. Geom. 37, 177–190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hardt, R., Simon, L.: Boundary regularity and embedded solutions for the oriented plateau problem. Ann. Math. (2) 110(3), 439–486 (1979)

    Google Scholar 

  33. Hildebrandt, K., Polthier, K.: On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces. Comput. Graph. Forum 30(5), 1513–1520 (2011)

    Article  Google Scholar 

  34. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata 123, 89–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hinze, M.: On the numerical approximation of unstable minimal surfaces with polygonal boundaries. Numer. Math. 73(1), 95–118 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Iglesias, J.A., Bruckstein, A.M.: On the Gamma-convergence of some polygonal curvature functionals. Appl. Anal. 94(5), 957–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meek, D.S., Walton, D.J.: On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput. Aided Geom. Des. 17(6), 521–543 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mennucci, A., Yezzi, A., Sundaramoorthi, G.: Properties of Sobolev-type metrics in the space of curves. Interfaces Free Bound. 10(4), 423–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moakher, M., Zéraï, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vis. 40(2), 171–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Morvan, J.M.: Generalized Curvatures. Springer Publishing Company, Berlin (2008)

    Book  MATH  Google Scholar 

  44. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pozzi, P.: The discrete Douglas problem: convergence results. IMA J. Numer. Anal. 25(2), 337–378 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Radó, T.: On the Problem of Plateau. Ergebn. d. Math. u. ihrer Grenzgebiete, vol. 2. Springer, Berlin (1933)

    Google Scholar 

  47. Regge, T.: General relativity without coordinates. Nuovo Cimento 19(10), 558–571 (1961)

    Article  MathSciNet  Google Scholar 

  48. Rivière, T.: Lipschitz conformal immersions from degenerating Riemann surfaces with L 2-bounded second fundamental forms. Adv. Calc. Var. 6(1), 1–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

    Google Scholar 

  50. Scholtes, S., Schumacher, H., Wardetzky, M.: Variational convergence of discrete elasticae (2019). https://arxiv.org/abs/1901.02228

  51. Schumacher, H., Wardetzky, M.: Variational convergence of discrete minimal surfaces. Numer. Math. 141(1), 173–213 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sullivan, J.M.: Curves of finite total curvature. In: Discrete Differential Geometry. Oberwolfach Seminar, vol. 38, pp. 137–161. Birkhäuser, Basel (2008)

    Google Scholar 

  53. Tsuchiya, T.: Discrete solution of the plateau problem and its convergence. Math. Comput. 49(179), 157–165 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wardetzky, M.: Discrete differential operators on polyhedral surfaces–convergence and approximation. Ph.D. thesis, Freie Universität Berlin (2006)

    Google Scholar 

  55. Wilson Jr., W.L.: On discrete Dirichlet and plateau problems. Numer. Math. 3, 359–373 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, Z., Xu, G., Sun, J.G.: Convergence analysis of discrete differential geometry operators over surfaces. In: IMA Conference on the Mathematics of Surfaces, pp. 448–457 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from DFG-project 282535003: Geometric curvature functionals: energy landscape and discrete methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wardetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schumacher, H., Wardetzky, M. (2020). Variational Methods for Discrete Geometric Functionals. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_5

Download citation

Publish with us

Policies and ethics