Skip to main content

On the Origin and Implications of Circadian Timekeeping: An Evolutionary Perspective

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

The ubiquity of circadian rhythms (driven by underlying circadian clocks) in various behavioural and physiological processes across a variety of life forms supports the hypothesis that such rhythms are probably adaptive. This is further substantiated by studies demonstrating that dysfunctional circadian clocks are associated with multiple aberrant physiological processes. However, owing to the complex interplay of life-history traits that collectively mediate realised fitness of organisms, rigorously testing whether circadian clocks are indeed adaptations turns out to be quite challenging. Here, we review our current state of knowledge on the adaptive benefits of circadian clocks, and discuss the pros and cons of various studies, followed by a brief discussion on our recommendations for how improved experimental designs can be employed in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daan S (2010) A history of chronobiological concepts. In: Albrecht U (ed) The Circadian clock. Springer, New York, pp 1–35

    Chapter  Google Scholar 

  2. Narayana Swamy V (1981) Origin and development of ayurveda. Anc Sci Life 1:1–7

    CAS  Google Scholar 

  3. Moritz A (2005) Timeless secrets of health and rejuvenation. Ener-Chi Wellness Center Publishers, Greer

    Google Scholar 

  4. Hankey A (2010) Establishing the scientific validity of Tridosha part 1: Doshas, Subdoshas and Dosha Prakritis. Anc Sci Life 29:6–18

    PubMed  PubMed Central  Google Scholar 

  5. Rose MR, Lauder GV (1996) Adaptation. Academic, New York

    Google Scholar 

  6. Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  7. William P (1802) Natural theology: or, evidences of the existence and attributes of the deity. J. Faulder, London

    Google Scholar 

  8. Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  9. Darwin C (1993) The autobiography of Charles Darwin, 1809–1882: with original omissions restored. Barlow N (ed). Collins, London 1958, subsequent editions 1969, 1993

    Google Scholar 

  10. Hume D (1779) In: Coleman D (ed) Dialogues concerning natural religion, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  11. Kant I (1790) Kant’s critique of judgement, translated with introduction and notes by JH Bernard. 2nd edn. 1914. Macmillan, London

    Google Scholar 

  12. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  13. Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  14. Gould SJ, Lewontin R (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    Article  CAS  PubMed  Google Scholar 

  15. Reeve HK, Sherman PW (1993) Adaptation and the goals of evolutionary research. Q Rev Biol 68:1–32

    Article  Google Scholar 

  16. Lauder GV, Leroi A, Rose MR (1993) Adaptations and history. Trends Ecol Evol 8:294–297

    Article  CAS  PubMed  Google Scholar 

  17. Bock WJ (1979) The synthetic explanation of macroevolutionary change-a reductionist approach. Bull Carnegie Mus 13:20–69

    Google Scholar 

  18. Gould SJ, Vrba ES (1982) Exaptation; a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  19. Sober E (1984) The nature of selection. The MIT Press, Cambridge

    Google Scholar 

  20. Coddington JA (1988) Cladistic tests of adaptational hypotheses. Cladistics 4:3–22

    Article  Google Scholar 

  21. Barker JSF (2009) Defining fitness in natural and domesticated populations. In: van der Werf J, Graser H-U, Frankham R, Gondro C (eds) Adaptation and fitness in animal populations. Springer, Heidelberg, pp 3–14

    Chapter  Google Scholar 

  22. Oatley K, Goodwin BC (1971) The explanation and investigation of biological rhythms. In: Colquhoun WP (ed) Biological rhythms and human performance. Academic, New York, pp 1–38

    Google Scholar 

  23. Ditty JL, Williams SB, Golden SS (2003) A cyanobacterial circadian timing mechanism. Annu Rev Genet 37:513–543

    Article  CAS  PubMed  Google Scholar 

  24. Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    Article  CAS  Google Scholar 

  25. Johnson CH, Kyriacou CP (2005) Clock evolution and adaptation: whence and whither? In: Hall AJW, McWatters H (eds) Endogenous plant rhythms. Blackwell Publishing Ltd, Oxford, pp 237–260

    Google Scholar 

  26. Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  CAS  PubMed  Google Scholar 

  27. Harker JE (1958) Experimental production of midgut tumors in Periplaneta americana L. J Exp Biol 35:251–259

    Google Scholar 

  28. Czeisler CA (1978) Human circadian physiology: internal organization of temperature, sleep-wake, and neuroendocrine rhythms monitored in an environment free of time cues. PhD thesis, Stanford University

    Google Scholar 

  29. Gibbs FP, Van Brunt TG (1975) Correlation of plasma corticosterone (“B”) with running activity in blinded rats. Fed Proc Fed Am Soc Exp Biol 34:301

    Google Scholar 

  30. Sulzman FM, Fuller CA, Moore-Ede MC (1979) Tonic effects of light on circadian system of squirrel monkey. J Comp Physiol 129:43–50

    Article  CAS  Google Scholar 

  31. Fuller CA, Sulzman FM, Moore-Ede MC (1978) Active and passive responses of circadian rhythms in body temperature to light-dark cycles. Fed Proc Fed Am Soc Exp Biol 37:832

    Google Scholar 

  32. Fuller CA, Sulzman FM, Moore-Ede MC (1978) Thermoregulation is impaired in an environment without circadian cues. Science 199:794–796

    Article  CAS  PubMed  Google Scholar 

  33. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioral consequences of disrupted circadian timing. PLoS Genet 4:e1000040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    Article  CAS  PubMed  Google Scholar 

  37. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  CAS  PubMed  Google Scholar 

  38. Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150:2153–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delezie J, Dumont S, Dardente H, Oudart H, Gréchez-Cassiau A, Klosen P, Teboul M, Delaunay F, Pévet P, Challet E (2012) The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. Fed Am Soc Exp Biol 26:3321–3335

    CAS  PubMed  Google Scholar 

  40. Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, Pryma DA, Khurana TS, Lazar MA (2013) The nuclear receptor REV-ERBα controls circadian thermogenic plasticity. Nature 503:410–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hand LE, Usan P, Cooper GJ, Xu LY, Ammori B, Cunningham PS, Aghamohammadzadeh R, Soran H, Greenstein A, Loudon AS, Bechtold DA, Ray DW (2015) Adiponectin induces a20 expression in adipose tissue to confer metabolic benefit. Diabetes 64:128–136

    Article  CAS  PubMed  Google Scholar 

  42. Covington M, Maloof J, Straume M, Kay S, Harmer S (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550

    Article  CAS  PubMed  Google Scholar 

  44. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  45. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay S (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63:88–102

    Article  CAS  Google Scholar 

  49. Cloudsley-Thompson JL (1960) Adaptive functions of circadian rhythms. Cold Spring Harb Symp Quant Biol 25:345–355

    Article  CAS  PubMed  Google Scholar 

  50. Rose MR (1925) Contribution à l’étude de la biologie du plankton: le problème des migrations verticals journalieres. Arch Zool Exp Gén 64:387–542

    Google Scholar 

  51. Russel FS (1927) The vertical distribution of plankton in the sea. Biol Bull 73:185–196

    Google Scholar 

  52. Kikuchi K (1930) Diurnal migrations of planktonic Crustacea. Q Rev Biol 5:189–206

    Article  Google Scholar 

  53. Cushing PH (1951) The vertical migration of planktonic Crustacea. Biol Rev 26:158–192

    Article  CAS  PubMed  Google Scholar 

  54. Welsh JH, Chace FA, Nunnemacher RF (1937) The diurnal migration of deep-water animals. Biol Bull 73:185–196

    Article  Google Scholar 

  55. Hardy A (1956) The open sea. Its natural history: the world of Plankton, New Naturalist Series. Collins, London

    Google Scholar 

  56. Gunn DL (1937) The humidity reactions of the woodlouse Porcellio scaber (Latreille). J Exp Biol 14:178–186

    Google Scholar 

  57. Fraenkel GS, Gunn DL (1940) The orientation of animals – kinesis, taxes and compass reactions. Oxford University Press, New York

    Google Scholar 

  58. Waloff N (1941) The mechanisms of humidity reactions of terrestrial arthropods. J Exp Biol 18:115–135

    Google Scholar 

  59. Cloudsley-Thompson JL (1951) On the responses to environmental stimuli and the sensory physiology of millipedes (Diplopoda). Proc R Soc Lond B 121:253–277

    Google Scholar 

  60. Cloudsley-Thompson JL (1952) Studies in diurnal rhythms. II. Changes in the physiological responses of the woodlouse Oniscus asellus (L.) to environmental stimuli. J Exp Biol 29:295–303

    Google Scholar 

  61. Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst 34:153–181

    Article  Google Scholar 

  62. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–38

    Article  CAS  PubMed  Google Scholar 

  63. Blanchong JA, McElhinny TL, Mahoney MM, Smale L (1999) Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus. J Biol Rhythms 14:364–377

    Article  CAS  PubMed  Google Scholar 

  64. Stevenson M, Deatherage G, LaVaque TJ (1968) Effect of light-dark reversal on the activity cycle of Sigmodon hispidus. Ecology 49:1162–1163

    Article  Google Scholar 

  65. Kas MJH, Edgar DM (1999) A nonphotic stimulus inverts the diurnal-nocturnal phase preference in Octodon degus. J Neurosci 19:328–333

    CAS  PubMed  Google Scholar 

  66. Hut RA, Pilorz V, Boerema AS, Strijkstra AM, Daan S (2011) Working for food shifts nocturnal mouse activity into the day. PLoS One 6:e17527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Daan S (1981) Adaptive daily strategies in behavior. In: Aschoff J (ed) Biological rhythms, vol 4. Plenum Press, New York, pp 275–298

    Chapter  Google Scholar 

  68. Jacobs GH (1993) The distribution and nature of color vision among the mammals. Biol Rev 68:413–471

    Article  CAS  PubMed  Google Scholar 

  69. van Schaik CP, Griffiths M (1996) Activity periods of Indonesian rain forest mammals. Biotropica 28:105–112

    Article  Google Scholar 

  70. DeCoursey PJ, Krulas JR, Mele G, Holley DC (1997) Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav 62:1099–1108

    Article  CAS  PubMed  Google Scholar 

  71. DeCoursey PJ, Krulas JR (1998) Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J Biol Rhythms 13:229–244

    Article  CAS  PubMed  Google Scholar 

  72. DeCoursey PJ, Walker JK, Smith SA (2000) A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A 186:169–180

    Article  CAS  PubMed  Google Scholar 

  73. Vogelbaum MA, Galef J, Menaker M (1993) Factors determining the restoration of circadian behavior by hypothalamic transplants. Neural Plast 4:239–256

    Article  CAS  Google Scholar 

  74. Ruby NF, Dark J, Heller HC, Zucker I (1996) Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Proc Natl Acad Sci U S A 93:9864–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turcotte DL, Cisne JL, Nordmann JC (1977) On the evolution of the lunar orbit. Icarus 30:254–266

    Article  Google Scholar 

  76. Panella G (1972) Paleontological evidence on the earth’s rotational history since early precambrian. Astrophysics Space Sci 16:212–237

    Article  Google Scholar 

  77. Wells JW (1963) Coral growth and geochronometry. Nature 197:948–950

    Article  Google Scholar 

  78. Laskar J (1999) The limits of Earth orbital calculations for geological time-scale use. Philos Trans R Soc A 357:1735–1759

    Article  Google Scholar 

  79. Krasinsky G (2002) Dynamical history of the Earth-Moon system. Celest Mech Dyn Astr 84:27–55

    Article  Google Scholar 

  80. Lathe R (2004) Fast tidal cycling and the origin of life. Icarus 168:18–22

    Article  CAS  Google Scholar 

  81. Tauber E, Last KS, Olive PJW, Kyriacou CP (2004) Clock gene evolution and functional divergence. J Biol Rhythms 19:445–458

    Article  CAS  PubMed  Google Scholar 

  82. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  83. Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A 100:2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    Article  CAS  PubMed  Google Scholar 

  85. Dassarma S, Kennedy SP, Berquist B, Ng WV, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH, Hood L (2001) Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res 70:3–17

    Article  CAS  PubMed  Google Scholar 

  86. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Article  CAS  PubMed  Google Scholar 

  87. Aoki S, Kato S, Ichikawa K, Shimizu M (2004) Circadian expression of the PpLhcb2 gene encoding a major light-harvesting chlorophyll a/b-binding protein in the moss Physcomitrella patens. Plant Cell Physiol 45:68–76

    Article  CAS  PubMed  Google Scholar 

  88. Christensen S, Silverthorne J (2001) Origins of phytochrome-modulated Lhcb mRNA expression in seed plants. Plant Physiol 126:1609–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Masashi S, Kazuhiro I, Aoki S (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophys Res Commun 324:1296–1301

    Article  CAS  Google Scholar 

  90. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii: what is it for? What is it similar to? Plant Physiol 137:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 101:3292–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sathyanarayanan S, Zheng X, Xiao R, Sehgal A (2004) Post-translational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116:603–615

    Article  CAS  PubMed  Google Scholar 

  93. Yang Y, He Q, Cheng P, Wrage P, Yarden O, Liu Y (2004) Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev 18:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rajesh P, Rastogi R, Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucl Acids 592980

    Google Scholar 

  95. Pittendrigh CS (1965) Biological clocks: the functions, ancient and modern, of circadian oscillations. Science in the sixties. In: Proceedings of the Cloudcroft Symposium. Air Force Office of Scientific Research, Arlington, pp 96–111

    Google Scholar 

  96. Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    Article  CAS  PubMed  Google Scholar 

  97. Edmunds LN (1988) Cellular and molecular bases of biological clocks. Springer, New York

    Google Scholar 

  98. Thompson CL, Sancar A (2002) Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 21:9043–9056

    Article  CAS  PubMed  Google Scholar 

  99. Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. Nucleic Acids Res 28:2353–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hendrischk AK, Frühwirth SW, Moldt J, Pokorny R, Metz S, Kaiser G, Jäger A, Batschauer A, Klug G (2009) A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides. Mol Microbiol 74:990–1003

    Article  CAS  PubMed  Google Scholar 

  101. Gehring W, Rosbash M (2003) The coevolution of blue-light photoreception and circadian rhythms. J Mol Evol 57(Suppl-1):S286–S289

    Article  CAS  PubMed  Google Scholar 

  102. Oztürk N, Song SH, Ozgür S, Selby CP, Morrison L, Partch C, Zhong D, Sancar A (2007) Structure and function of animal cryptochromes. Cold Spring Harb Symp Quant Biol 72:119–131

    Article  PubMed  Google Scholar 

  103. Zhu H, Yuan Q, Froy O, Casselman A, Reppert SM (2005) The two CRYs of the butterfly. Curr Biol 15:R953–R954

    Article  CAS  PubMed  Google Scholar 

  104. Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16:1352–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Levandowsky M (1981) Endosymbionts, biogenic amines, and a heterodyne hypothesis for circadian rhythms. Ann N Y Acad Sci 361:369–375

    Article  CAS  PubMed  Google Scholar 

  106. Kippert F (1986) Endocytobiotic coordination, intracellular calcium signaling, and the origin of endogenous rhythms. Ann N Y Acad Sci 503:476–495

    Article  Google Scholar 

  107. Roenneberg T (2012) Internal time: chronotypes, social jet-lag, and why you’re so tired. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  108. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    CAS  PubMed  Google Scholar 

  109. Dijk DJ, Duffy JF, Czeisler CA (1992) Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res 1:112–117

    Article  CAS  PubMed  Google Scholar 

  110. Litinski M, Scheer FA, Shea SA (2009) Influence of the circadian system on disease severity. Sleep Med Clin 4:143–163

    Article  PubMed  PubMed Central  Google Scholar 

  111. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morris CJ, Aeschbach D, Scheer FA (2012) Circadian system, sleep and endocrinology. Mol Cell Endocrinol 349:91–104

    Article  CAS  PubMed  Google Scholar 

  113. Leproult R, Holmback U, Van Cauter E (2014) Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63:1860–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Archer SN, Laing EE, Moller-Levet CS, van der Veen DR, Bucca G, Lazar AS, Santhi N, Slak A, Kabijo R, von Schantz M, Smith CP, Dijk DJ (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111:E682–E691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumar S, Mohan A, Sharma VK (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol Int 22:641–653

    Article  PubMed  Google Scholar 

  116. Paranjpe D, Sharma VK (2005) Evolution of temporal order in living organisms. J Circadian Rhythms 3:7–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A 99:2134–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hendricks JC, Lu S, Kume K, Yin JCP, Yang Z, Sehgal A (2003) Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18:12–25

    Article  CAS  PubMed  Google Scholar 

  119. Wang ZY, Tobin EM (1998) Constitutive expression of the Circadian Clock Associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  CAS  PubMed  Google Scholar 

  120. Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay S (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  CAS  PubMed  Google Scholar 

  121. McWatters HG, Bastow RM, Hall A, Millar A (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720

    Article  CAS  PubMed  Google Scholar 

  122. Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    Article  CAS  PubMed  Google Scholar 

  124. Allemand R, Cohet Y, David J (1973) Increase in the longevity of adult Drosophila melanogaster kept in permanent darkness. Exp Gerontol 8:279–283

    Article  CAS  PubMed  Google Scholar 

  125. Pittendrigh CS, Bruce VG (1959) Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In: Withrow RB (ed) Photoperiodism and related phenomena in plants and animals. Proceeding of conference of photoperiodism, pp 475–505

    Google Scholar 

  126. Saunders DS (1972) Circadian control of larval growth rate in Sarcophaga argyrostoma. Proc Natl Acad Sci U S A 69:2738–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lone SR, Ilangovan V, Murugan M, Sharma VK (2010) Circadian resonance in the development of two sympatric species of Camponotus ants. J Insect Physiol 56:1611–1616

    Article  CAS  PubMed  Google Scholar 

  128. Withrow AP, Withrow RB (1949) Photoperiodic chlorosis in tomato. Plant Physiol 24:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Highkin HR, Hanson JB (1954) Possible interaction between light-dark cycles and endogenous daily rhythms on the growth of tomato plants. Plant Physiol 29:301–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hillman WS (1956) Injury of tomato plants by continuous light and unfavourable photoperiodic cycles. Am J Bot 43:89–96

    Article  Google Scholar 

  131. Went FW (1960) Photo- and thermo-periodic effects in plant growth. Cold Spring Harb Symp Quant Biol 25:221–230

    Article  CAS  PubMed  Google Scholar 

  132. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci U S A 40:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zimmerman WF, Pittendrigh CS, Pavlidis T (1968) Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J Insect Physiol 14:669–684

    Article  CAS  PubMed  Google Scholar 

  134. Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci U S A 69:1537–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. von Saint Paul US, Aschoff J (1978) Longevity among blowflies Phormia terraenovae R. D. kept in non-24 hour light-dark cycles. J Comp Physiol A 127:191–195

    Article  Google Scholar 

  136. Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13:471–478

    Article  CAS  PubMed  Google Scholar 

  137. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  139. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  140. Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  CAS  PubMed  Google Scholar 

  141. Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Article  CAS  PubMed  Google Scholar 

  142. Bradshaw WE, Quebodeaux MC, Holzapfel CM (2003) Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment? Am Nat 161:735–748

    Article  CAS  PubMed  Google Scholar 

  143. Emerson KJ, Bradshaw WE, Holzapfel CM (2008) Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62:979–983

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    Article  PubMed  Google Scholar 

  145. Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S (2013) Latitudinal clines: an evolutionary view on biological rhythms. Proc R Soc Lond B 280:20130433

    Article  Google Scholar 

  146. Lankinen P (1986) Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J Comp Physiol A 159:123–142

    Article  Google Scholar 

  147. Pittendrigh CS, Takamura T (1989) Latitudinal clines in the properties of a circadian pacemaker. J Biol Rhythms 4:217–235

    Article  CAS  PubMed  Google Scholar 

  148. Allemand R, David JR (1976) The circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia 32:1403–1405

    Article  Google Scholar 

  149. Costa R, Peixoto AA, Barbujani G, Kyriacou CP (1992) A latitudinal cline in a Drosophila clock gene. Proc R Soc Lond B 250:43–49

    Article  CAS  Google Scholar 

  150. Rosato E, Peixoto AA, Barbujani G, Costa R, Kyriacou CP (1994) Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138:693–707

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sawyer LA, Hennessy JM, Peixoto AA, Rosato E, Parkinson H, Costa R, Kyriacou CP (1997) Natural variation in a Drosophila clock gene and temperature compensation. Science 278:2117–2120

    Article  CAS  PubMed  Google Scholar 

  152. Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R, Kyriacou CP (2006) The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: implications for selection. Genetics 174:465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Weeks AR, McKechnie SW, Hoffmann AA (2006) In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations. J Evol Biol 19:551–557

    Article  CAS  PubMed  Google Scholar 

  154. Rosato E, Trevisan A, Sandrelli F, Zordan M, Kyriacou CP, Costa R (1997) Conceptual translation of timeless reveals alternative initiating methionines in Drosophila. Nucleic Acids Res 25:455–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tauber E, Zordan M, Sandrelli F, Pegoraro M, Osterwalder N, Breda C, Daga A, Selmin A, Monger K, Benna C, Rosato E, Kyriacou CP, Costa R (2007) Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:1895–1898

    Article  CAS  PubMed  Google Scholar 

  156. Kyriacou CP, Peixoto AA, Sandrelli F, Costa R, Tauber E (2008) Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet 24:124–132

    Article  CAS  PubMed  Google Scholar 

  157. Schmidt PS, Matzkin L, Ippolito M, Eanes WF (2005) Geographic variation in diapause incidence, life history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59:1721–1732

    Article  PubMed  Google Scholar 

  158. Schmidt PS, Conde DR (2006) Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution 60:1602–1611

    Article  PubMed  Google Scholar 

  159. Mathias D, Jacky L, Bradshaw WE, Holzapfel CM (2007) Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stehlik J, Zavodska R, Shimada K, Sauman I, Kostal V (2008) Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23:129–139

    Article  CAS  PubMed  Google Scholar 

  161. Ikeno T, Numata H, Goto SG (2011) Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol 57:935–938

    Article  CAS  PubMed  Google Scholar 

  162. Yamada H, Yamamoto MT (2011) Association between circadian clock genes and diapause incidence in Drosophila triauraria. PLoS One 6:e27493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Han B, Denlinger DL (2009) Length variation in a specific region of the period gene correlates with differences in pupal diapause incidence in the flesh fly, Sarcophaga bullata. J Insect Physiol 55:415–418

    Article  CAS  PubMed  Google Scholar 

  164. Han B, Denlinger DL (2009) Mendelian inheritance of pupal diapause in the flesh fly, Sarcophaga bullata. J Hered 100:251–255

    Article  CAS  PubMed  Google Scholar 

  165. Ciarleglio CM, Ryckman KK, Servick SV, Hida A, Robbins S, Wells N, Hicks J, Larson SA, Wiedermann JP, Carver K, Hamilton N, Kidd KK, Kidd JR, Smith JR, Friedlaender J, McMahon DG, Williams SM, Summar ML, Johnson CH (2008) Genetic differences in human circadian clock genes among worldwide populations. J Biol Rhythms 23:330–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cruciani F, Trombetta B, Labuda D, Modiano D, Torroni A, Costa R, Scozzari R (2008) Genetic diversity patterns at the human clock gene period2 are suggestive of population-specific positive selection. Eur J Hum Genet 16:1526–1534

    Article  CAS  PubMed  Google Scholar 

  167. Fidler AE, Gwinner E (2003) Comparative analysis of avian BMAL1 and CLOCK protein sequences: a search for features associated with owl nocturnal behaviour. Comp Biochem Physiol B 136:861–874

    Article  PubMed  CAS  Google Scholar 

  168. Johnsen A, Fidler AE, Kuhn S, Carter KL, Hoffmann A, Barr IR et al (2007) Avian Clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol Ecol 16:4867–4880

    Article  CAS  PubMed  Google Scholar 

  169. Dor R, Cooper CB, Lovette IJ, Massoni V, Bulit F, Liljesthrom M, Winkler DW (2012) Clock gene variation in Tachycineta swallows. Ecol Evol 2:95–105

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dor R, Lovette IJ, Safran RJ, Billerman SM, Huber GH, Vortman Y, Lotem A, McGowan A, Evans MR, Cooper CB, Winkler DW (2011) Low variation in the polymorphic clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLoS One 6:e28843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. O’Malley KG, Banks MA (2008) A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: evidence for selection on PolyQ length variants. Proc R Soc Lond B 275:2813–2821

    Article  CAS  Google Scholar 

  172. O’Malley KG, Ford MJ, Hard JJ (2010) Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient. Proc R Soc Lond B 277:3703–3714

    Article  CAS  Google Scholar 

  173. Mayer W (1966) Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten. Planta 70:237–256

    Article  CAS  PubMed  Google Scholar 

  174. Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci U S A 105:21028–21033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sorensen JG, Loeschcke V (2002) Natural adaptation to environmental stress via physiological clock-regulation of stress resistance in Drosophila. Ecol Lett 5:16–19

    Article  Google Scholar 

  177. Rikin A, Dillwith JW, Bergman DK (1993) Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiol 101:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fowler SG, Cook D, Thomashow ME (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67

    Article  CAS  PubMed  Google Scholar 

  180. Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    Article  CAS  PubMed  Google Scholar 

  181. Park O, Roberts T, Harris S (1941) Preliminary analysis of activity of the cave crayfish, Cambarus pellucidus. Am Nat 75:154–171

    Article  Google Scholar 

  182. Brown FA (1961) Diurnal rhythm in cave crayfish. Nature 191:929–930

    Article  Google Scholar 

  183. Jegla TC, Poulson TL (1968) Evidence of circadian rhythms in a cave crayfish. J Exp Zool 168:273–282

    Article  Google Scholar 

  184. Hobbs HHIII, Barr TC (1972) Origins and affinities of the troglobitic crayfishes of north America (Decapoda: Astacidae), II: Genus Orconectes. Smithson Contrib Zool 105:1–84

    Google Scholar 

  185. Trajano E, Carvalho M, Duarte L, Menna-Barreto L (2009) Comparative study on free-running locomotor activity circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes; Characiformes). Biol Rhythm Res 40:477–489

    Article  Google Scholar 

  186. Colli L, Paglianti A, Berti R, Gandolfi G, Tagliavini J (2008) Molecular phylogeny of the blind cavefish Phreatichthys andruzzii and Garra barreimiae within the family Cyprinidae. Environ Biol Fishes 84:95–107

    Article  Google Scholar 

  187. Ercolini A, Berti R (1975) Light sensitivity experiments and morphology studies of the blind phreatic fish Phreatichthys andruzzii Vinciguerra from Somalia. Monit Zool Ital Suppl 6:29–43

    Google Scholar 

  188. Tarttelin EE, Frigato E, Bellingham J, Di Rosa V, Berti R, Foulkes NS, Lucas RJ, Bertolucci C (2012) Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii. J Exp Biol 215:2898–2903

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A, Berti R, Sánchez-Vázquez FJ, Bertolucci C, Foulkes NS (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9:e1001142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pati AK (2001) Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Dev Environ Biol Fish 21:119–129

    Article  Google Scholar 

  191. Agrawal A (2008) Phototactic behavior in cave populations of Nemacheilus evezardi with special reference to light intensity and feeding schedules. Biol Rhythm Res 39:439–447

    Article  Google Scholar 

  192. Biswas J, Pati A, Pradhan RK (1990) Circadian and circannual rhythms in air gulping behaviour of cave fish. Biol Rhythm Res 21:257–268

    Article  Google Scholar 

  193. Biswas J, Pradhan RK, Pati A (1990) Studies on burying behaviour in epigean and hypogean fish, Oreonectus evezardi: an example of behavioural divergence. Mem Biospeleologie 17:33–41

    Google Scholar 

  194. Pradhan RK, Biswas J (1994) The influence of photoperiods on the air-gulping behaviour of the cave fish Nemacheilus evezardi (Day). Proc Natl Acad Sci India 64:373–380

    Google Scholar 

  195. Pradhan RK, Pati AK, Agarwal SM (1989) Meal scheduling modulation of circadian rhythm of phototactic behaviour in cave dwelling fish. Chronobiol Int 6:245–249

    Article  CAS  PubMed  Google Scholar 

  196. Biswas J, Ramteke AK (2008) Timed feeding synchronizes circadian rhythm in vertical swimming activity in cave loach, Nemacheilus evezardi. Biol Rhythm Res 39:405–412

    Article  Google Scholar 

  197. Trajano E, Ueno J, Menna-Barreto L (2012) Evolution of time-control mechanisms in subterranean organisms: cave fishes under light-dark cycles (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res 43:191–203

    Article  Google Scholar 

  198. Trajano E, Menna-Barreto L (1996) Free-running locomotor activity rhythms in cave-dwelling catfishes, Trichomycterus sp., from Brazil (Teleostei, Siluriformes). Biol Rhythm Res 27:329–335

    Article  Google Scholar 

  199. Blume J, Bünning E, Günzler E (1962) Zur Aktivitätsperiodik bei Höhlentieren. Naturwissenschaften 49:525

    Article  Google Scholar 

  200. Günzler E (1964) Über den Verlust der endogenen Tagesrhythmik bei dem Höhlenkrebs Niphargus puteanus puteanus (Koch). Eberhard-Karls-Universität zu Tübingen

    Google Scholar 

  201. Lamprecht G, Weber F (1977) Die Lichtempfindlichkeit der circadianen Rhythmik dreier Höhlenkafer-Arten der Gattung Laemostenus. J Insect Physiol 23:445–452

    Article  Google Scholar 

  202. Bartkowiak D, Tscharntke T, Weber F (1991) Effects of stabilizing selections on the regressive evolution of compound eyes in hypogean carabid beetles. Mem Biospeologie 18:19–24

    Google Scholar 

  203. Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK (2000) Presence of circadian rhythms in the locomotor activity of a cave dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int 17:757–765

    Article  CAS  PubMed  Google Scholar 

  204. Wiley SBA (1973) A comparison of respiration and activity in four species of cavernicolous beetles (Carabidae, Rhadine). MS thesis, Texas Tech University

    Google Scholar 

  205. Weber F (1980) Die regressive evolution des Zeitmessvermögens bei Höhlen-Arthropoden. Mem Biospeleologie 7:287–312

    Google Scholar 

  206. Kos M, Bulog B, Szél Á, Röhlich P (2001) Immunocytochemical demonstration of visual pigments in the degenerate retinal and pineal photoreceptors of the blind cave salamander (Proteus anguinus). Cell Tissue Res 303:15–25

    Article  CAS  PubMed  Google Scholar 

  207. Briegleb W, Schatz A (1974) Der Extrembiotop Höhle als Informationslieferant fur die allgemeine Physiologie am Beispiel des Grottenolms (Proteus anguinus Laur.). Acta Carsologica 4:287–297

    Google Scholar 

  208. Schatz A, Briegleb W, Sinapius F, Neubert J (1977) Rhythmic locomotor activity of the grottenolm (Proteus anguinus Laur.) and the gold fish (Carassius sp.) measured in a mine. J Interdiscip Cycle Res 8:347–349

    Article  Google Scholar 

  209. Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204:269–281

    CAS  PubMed  Google Scholar 

  210. Avivi A, Oster H, Joel A, Beiles A, Albrecht U, Nevo E (2002) Circadian genes in a blind subterranean mammal II: conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Proc Natl Acad Sci U S A 99:11718–11723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Avivi A, Oster H, Joel A, Beiles A, Albrecht U, Nevo E (2004) Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. J Biol Rhythms 19:22–34

    Article  CAS  PubMed  Google Scholar 

  212. Riccio AP, Goldman BD (2000) Circadian rhythms of locomotor activity in naked mole-rats (Heterocephalus glaber). Physiol Behav 71:1–13

    Article  CAS  PubMed  Google Scholar 

  213. van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Blix AS, Stokkan KA (2005) Circadian organization in reindeer. Nat Cell Biol 438:1095–1096

    Google Scholar 

  214. van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Stokkan KA (2007) Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94:183–194

    Article  CAS  PubMed  Google Scholar 

  215. Stokkan KA, van Oort BEH, Tyler NJC, Loudon ASI (2007) Adaptations for life in the Arctic: evidence that melatonin rhythms in reindeer are not driven by a circadian oscillator but remain acutely sensitive to environmental photoperiod. J Pineal Res 43:289–293

    Article  CAS  PubMed  Google Scholar 

  216. Reierth E, Van’t Hof TJ, Stokkan KA (1999) Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). J Biol Rhythms 14:314–319

    Article  CAS  PubMed  Google Scholar 

  217. Gwinner E, Michaela H, Sabine H (1997) Melatonin: generation and modulation of avian circadian rhythms. Brain Res Bull 44:439–444

    Article  CAS  PubMed  Google Scholar 

  218. Sheeba V, Sharma VK, Chandrashekaran MK, Joshi A (1999) Persistence of eclosion rhythm in the fruitfly Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 86:448–449

    Article  CAS  PubMed  Google Scholar 

  219. Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK (2001) Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. J Exp Zool 290:541–549

    Article  CAS  PubMed  Google Scholar 

  220. Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK (2002) Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 89:512–514

    Article  CAS  PubMed  Google Scholar 

  221. Imafuku M, Haramura T (2011) Activity rhythm of Drosophila kept in complete darkness for 1300 generations. Zoolog Sci 28:195–198

    Article  PubMed  Google Scholar 

  222. Clayton DL, Paietta JV (1972) Selection for circadian eclosion time in Drosophila melanogaster. Science 178:994–995

    Article  CAS  PubMed  Google Scholar 

  223. Pittendrigh CS (1967) Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc Natl Acad Sci U S A 58:1762–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pittendrigh CS, Minis DH (1971) The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. In: Menaker M (ed) Biochronometry. National Academy of Sciences, Washington, DC, pp 212–250

    Google Scholar 

  225. Pittendrigh CS, Takamura T (1987) Temperature dependence and evolutionary adjustment of critical night length in insect photoperiodism. Proc Natl Acad Sci U S A 84:7169–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vaze KM, Sharma VK (2013) On the adaptive significance of circadian clocks for their owners. Chronobiol Int 30:413–433

    Article  PubMed  Google Scholar 

  227. Kumar S, Kumar D, Paranjpe DA, Akarsh CR, Sharma VK (2007) Selection on the timing of adult emergence results in altered circadian clocks in fruit flies Drosophila melanogaster. J Exp Biol 210:906–918

    Article  PubMed  Google Scholar 

  228. Nikhil KL, Vaze KM, Ratna K, Sharma VK (2016) Circadian clock properties of fruit flies Drosophila melanogaster exhibiting early and late emergence chronotypes. Chronobiol Int 33:22–38

    Article  CAS  PubMed  Google Scholar 

  229. Vaze KM, Nikhil KL, Abhilash L, Sharma VK (2012) Early- and late emerging Drosophila melanogaster fruit flies differ in their sensitivity to light during morning and evening. Chronobiol Int 29:674–682

    Article  PubMed  Google Scholar 

  230. Duffy JF, Dijk DJ, Hall EF, Czeisler CA (1999) Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Invest Med 47:141–150

    CAS  Google Scholar 

  231. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90

    Article  PubMed  Google Scholar 

  232. Duffy JF, Rimmer DW, Czeisler CA (2001) Association of intrinsic circadian period with morningness-eveningness usual wake time and circadian phase. Behav Neurosci 115:895–899

    Article  CAS  PubMed  Google Scholar 

  233. Roenneberg T, Daan S, Merrow M (2003) The art of entrainment. J Biol Rhythms 18:183–194

    Article  PubMed  Google Scholar 

  234. Goulet G, Mongrain V, Desrosiers C, Paquet J, Dumont M (2007) Daily light exposure in morning-type and evening-type individuals. J Biol Rhythms 22:151–158

    Article  PubMed  Google Scholar 

  235. Nikhil KL, Abhilash L, Sharma VK (2016) Molecular correlates of circadian clocks in fruit fly Drosophila melanogaster populations exhibiting early and late emergence chronotypes. J Biol Rhythms 31:125–141

    Article  PubMed  Google Scholar 

  236. Nikhil KL, Vaze KM, Sharma VK (2015) Late emergence chronotypes of fruit flies Drosophila melanogaster exhibit higher accuracy of entrainment. Chronobiol Int 32:1477–1485

    Article  CAS  PubMed  Google Scholar 

  237. Nikhil KL, Ratna K, Sharma VK (2016) Life-history traits of Drosophila melanogaster populations exhibiting early and late eclosion chronotypes. BMC Evol Biol 16:1

    Article  Google Scholar 

  238. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J Comp Physiol 106:291–331

    Article  Google Scholar 

  239. Kannan NN, Vaze KM, Sharma VK (2012) Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster. J Exp Biol 215:3527–3534

    Article  PubMed  Google Scholar 

  240. Kannan NN, Mukherjee N, Sharma VK (2012) Robustness of circadian timing systems evolves in fruit flies Drosophila melanogaster as a correlated response to selection for adult emergence in a narrow window of time. Chronobiol Int 29:1312–1328

    Article  PubMed  Google Scholar 

  241. Varma V, Kannan NN, Sharma VK (2014) Selection for narrow gate of emergence results in correlated sex-specific changes in life history of Drosophila melanogaster. Biol Open 3:606–613

    Article  PubMed  PubMed Central  Google Scholar 

  242. Shimizu T, Miyatake T, Watari Y, Arai T (1997) A gene pleiotropically controlling developmental and circadian periods in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Heredity (Edinb) 70:600–605

    Article  Google Scholar 

  243. Yadav P, Sharma VK (2013) Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. J Comp Physiol B 183:333–343

    Article  CAS  PubMed  Google Scholar 

  244. Takahashi KH, Teramura K, Muraoka S, Okada Y, Miyatake T (2013) Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in Drosophila melanogaster. Heredity (Edinb) 110:312–320

    Article  CAS  Google Scholar 

  245. Kyriacou CP, Oldroyd M, Wood J, Sharp M, Hill M (1990) Clock mutations alter developmental timing in Drosophila. Heredity 64:395–401

    Article  PubMed  Google Scholar 

  246. Miyatake T (2002) Circadian rhythm and time of mating in Bactrocera cucurbitae (Diptera: Tephritidae) selected for age at reproduction. Heredity 88:302–306

    Article  PubMed  Google Scholar 

  247. Garland T, Rose MR (eds) (2009) Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press, Berkeley

    Google Scholar 

  248. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc B 358:1050–1070

    Article  CAS  Google Scholar 

  249. Vaze KM, Kannan NN, Abhilash L, Sharma VK (2012) Chronotype differences in Drosophila are enhanced by semi-natural conditions. Naturwissenschaften 99:967–971

    Article  CAS  PubMed  Google Scholar 

  250. Nikhil KL, Goirik G, Ratna K, Sharma VK (2014) Role of temperature in mediating morning and evening emergence chronotypes in fruit flies Drosophila melanogaster. J Biol Rhythms 29:427–441

    Article  CAS  PubMed  Google Scholar 

  251. Yang J, Chen X, Bai J, Fang D, Qiu Y, Jiang W, Yuan H, Bian C, Lu J, He S, Pan X, Zhang Y, Wang X, You X, Wang Y, Sun Y, Mao D, Liu Y, Fan G, Zhang H, Chen X, Zhang X, Zheng L, Wang J, Cheng L, Chen J, Ruan Z, Li J, Yu H, Peng C, Ma X, Xu J, He Y, Xu Z, Xu P, Wang J, Yang H, Wang J, Whitten T, Xu X, Shi Q (2016) The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol 14:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A Lakshman and TV Venkateswaran for their valuable help with the preparation of the manuscript. This work was supported by funds from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Nikhil .

Editor information

Editors and Affiliations

Glossary

Adaptation

The process by which organisms evolve traits that confer higher fitness in the organisms’ habitat. Alternatively, the trait that confers higher fitness to organisms in a given environment is termed an adaptation.

Circadian clocks

Biological timekeeping mechanisms that drive circadian rhythms.

Circadian rhythms (Latin circa = about/approximately; diēs = day)

Biological rhythms in behaviour and physiology expressed with a period of ~24 h under constant conditions (absence of external time cues/zeitgebers).

Clines

Gradual phenotypic variation across a geographical area as a consequence of variation in geophysical features such as latitudes (latitudinal clines) or altitudes (altitudinal clines).

Directional selection

Selection for a phenotype that constitutes the extremes of the phenotype distribution in the population.

Effective population size

The size of an ideal population that would undergo an equal amount of genetic drift as that of a nonideal population of size N is defined as the effective population size (N e ).

Entrainment

Entrainment refers to the process of synchronisation of circadian rhythms to external time cues (zeitgeber) such that (a) the period of the entrained rhythm match that of the zeitgeber, (b) the rhythms attain a stable and reproducible phase relationship with the zeitgeber (also known as phase of entrainment) and (c) upon removal of the zeitgeber, the free-running rhythm initiates from the phase of entrainment established with the prior zeitgeber.

Fitness

Fitness is the measure of an organism’s or a population’s ability to survive and reproduce in a given environment.

Free-running period (τ)

The period of the circadian rhythms exhibited under constant conditions.

Inbreeding

Mating among individuals with high genetic relatedness leading to increased homozygosity, isogeny and random fixation of deleterious alleles over generations.

Linkage disequilibrium

Also known as gametic phase disequilibrium, this is the occurrence in members of a population a particular combination of linked alleles in non-random proportions.

Phase response curve (PRC)

A PRC maps the magnitude of response (measured as phase shifts) to zeitgebers at different phases of the circadian cycle and, therefore, is a measure of the circadian clocks’ zeitgeber sensitivity.

T-cycle

Zeitgeber cycles of periodicity T. For instance, T24 indicates a 24-h zeitgeber cycle with the durations of light/dark or thermophase/cryophase summing up to 24-h, T30 a 30-h zeitgeber cycle and so on.

Temperature compensation

Temperature compensation refers to the ability of circadian clocks to maintain a stable and constant τ across different temperatures by compensating for temperature-induced changes in the rate of biochemical reactions.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Nikhil, K.L., Sharma, V.K. (2017). On the Origin and Implications of Circadian Timekeeping: An Evolutionary Perspective. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_5

Download citation

Publish with us

Policies and ethics