Skip to main content

Potassium-Solubilizing Microorganism in Evergreen Agriculture: An Overview

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Increasing cost of the fertilizers with lesser nutrient use efficiency necessitates alternate means to fertilizers. Soil is a storehouse of nutrients and energy for living organisms under the soil-plant-microorganism system. These rhizospheric microorganisms are crucial components of sustainable agricultural ecosystems. They are involved in sustaining soil as well as crop productivity under organic matter decomposition, nutrient transformations, and biological nutrient cycling. The rhizospheric microorganisms regulate the nutrient flow in the soil through assimilating nutrients, producing biomass, and converting organically bound forms of nutrients. Soil microorganisms play a significant role in a number of chemical transformations of soils and thus, influence the availability of macro- and micronutrients. Use of plant growth-promoting microorganisms (PGPMs) helps in increasing yields in addition to conventional plant protection. The most important PGPMs are Azospirillum, Azotobacter, Bacillus subtilis, B. mucilaginosus, B. edaphicus, B. circulans, Paenibacillus spp., Acidithiobacillus ferrooxidans, Pseudomonas, Burkholderia, potassium, phosphorous, zinc-solubilizing microorganisms, or SMART microbes; these are eco-friendly and environmentally safe. The rhizosphere is the important area of soil influenced by plant roots. It is composed of huge microbial populations that are somehow different from the rest of the soil population, generally denominated as the “rhizosphere effect.” The rhizosphere is the small region of soil that is immediately near to the root surface and also affected by root exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Mageed A (2012) Impact of rock materials and biofertilization on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk 7:43–48

    Google Scholar 

  • Aleksandrov V, Blagodyr R, Ilev I (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z 29:111–114

    CAS  Google Scholar 

  • Alves L, Oliveira VL, Filho GNS (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbiol 41:76–84

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi V, Alagawadi A (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Ashley DL, Blount B, Singer PC, Depaz E, Wilkes C, Gordon S (2005) Changes in blood trihalomethane concentrations resulting from differences in water quality and water-use activities. Arch Environ Occup Health 60(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Askegaard M, Eriksen J, Johnston AE (2004) Sustainable management of potassium. In: Schjorring P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CABI Publishing, Wallingford, pp 85–102

    Chapter  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2:484–503

    Google Scholar 

  • Badar MA (2006) Efficiency of K feldspar combined with organic material and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAMBERT Academic Publishing, Germany. ISBN 978-3659298424

    Google Scholar 

  • Bin L, Bin W, Mu P, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr Cycl Agroecosyst 89:15–30

    Article  Google Scholar 

  • Chen S, Lian B, Liu CQ (2008) Bacillus mucilaginosus on weathering of phosphorite and primary analysis of bacterial proteins during weathering. Chin J Geochem 27:209–216

    Article  Google Scholar 

  • Clark RB, Zeto SK (1996) Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1505–1511

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    Article  CAS  Google Scholar 

  • Claus D, Berkeley CW (1986) The genus Bacillus. In: PHA Sneath (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams, Wilkins, Baltimore. 34, 1105–1139

    Google Scholar 

  • Das BK, Sen SP (1981) Effect of nitrogen, phosphorus and potassium deficiency on the uptake and mobilization of ions in Bengal gram (Cicer arietinum). J Biosci 3:249–258

    Article  CAS  Google Scholar 

  • Domínguez-Ferreras A, Munoz S, Olivares J, Soto MJ, Sanjuan J (2009) Role of potassium uptake systems in Sinorhizobium meliloti adaptation and symbiotic performance. J Bacteriol 21:33–43

    Google Scholar 

  • Egamberdiveya D (2006) Enhancement of wheat performance with plant growth promoting bacteria in different soils. In: Mukerji KG, Manoharachary C (eds) Current concepts in botany. International Publishing House Ltd, New Delhi, pp 417–425

    Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    Article  CAS  PubMed  Google Scholar 

  • Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J Bacteriol 108:639–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foth HD, Ellis BG (1997) Soil fertility. CRC Press, Boca Raton, p 290

    Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil 191:181–188

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus spp. SVUNM9 isolated from mica cores of Nellore district, Andhra Pradesh, India. J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Han HS, Supanjani E, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    CAS  Google Scholar 

  • Hasan R (2002) Potassium status of soils in India. Better Crops 16(2):3–5

    Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate-potassium rocks and their effect on khella (Ammi visnaga) growth. Annu Agric Sci 55:37–53

    Google Scholar 

  • Hillel M (2008) balanced crop nutrition: fertilizing for crop and food quality. Turk J Agric For 32:183–193

    Google Scholar 

  • Holthusen D, Peth S, Horn R (2010) Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Tillage Res 111:75–85

    Article  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Kafkafi U (1990) The functions of plant K in overcoming environmental stress situations. In: Development of K-fertilizer recommendations: proceedings 22nd colloquium of the International Potash Institute, Bern, Switzerland, pp 81–93

    Google Scholar 

  • Kumar P, Dubey R, Maheshwari D (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pur Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lack A, Evans J, David E (2005) Bios instant notes plant biology. Taylor & Francis, New York/Abingdon, pp 351

    Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant and Soil 117:103–110

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin Q, Rao Z, Sun Y, Yao J, Xing L (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu GY (2001) Screening of silicate bacteria with potassium releasing and antagonistic activity. Chin J Appl Environ Biol 7:66–68

    CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus spp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences: http://jimmcafee.tamu.edu/files/potassium

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latv J Agron 8:154–157

    Google Scholar 

  • Mirminachi F, Zhang A, Roehr M (2002) Citric acid fermentation and heavy metal ions. Acta Biotechnol 22:363–373

    Article  CAS  Google Scholar 

  • Mora V, Baigorri R, Bacaicoa E, Zamarreñob AM, García-Mina JM (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ Exp Bot 76:24–32

    Article  CAS  Google Scholar 

  • Muentz (1890) Surla décomposition desroches etla formation de la terrearable. CR Acad Sci 110:1370–1372

    Google Scholar 

  • Muralikannan N (1996) Biodissolution of silicate, phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. M.Sc. (Ag) thesis submitted to Tamil Nadu Agricultural University, Coimbatore. p 125

    Google Scholar 

  • Nieves-Cordones M, Aleman F, Martinez V, Rubio F (2014) K+ uptake in plant roots. The systems involved their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    Article  CAS  PubMed  Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manag 21:102–112

    Article  Google Scholar 

  • Prajapati K, Modi H (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Technol J Microbiol 1:8–14

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of association of microbiologists of India, p 124

    Google Scholar 

  • Ramamurthy B, Bajaj JC (1969) Soil fertility map of India. Indian Agricultural Research Institute, Annual report New Delhi

    Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. University of Minnesota Extension, www.extension.umn.edu/distribution/cropsystems. 46, pp 229–236. doi 10.1139/cjm-46-3-229

  • Rich CI (1968) Mineralogy of soil potassium. In: Kilmer VJ et al (eds) The role of potassium in agriculture. ASA, CSSA, SSSA, Madison, pp 79–108

    Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant and Soil 335:155–180

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spice Aromat Crops 21:118–124

    Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccoro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669

    Article  CAS  PubMed  Google Scholar 

  • Shaaban EA, El-Shamma IMS, El Shazly S, El-Gazzar A, Abdel-Hak RE (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of valencia orange fruits in reclaimed soils. J Appl Sci Res 8:4504–4510

    Google Scholar 

  • Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 52:1023–1028

    Article  Google Scholar 

  • Sheng XF (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria scientia. Agric Sin 35(6):673–677

    CAS  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39(6):863–871

    CAS  Google Scholar 

  • Sheng X, He L, Huang W (2001) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1(6):662–666

    Google Scholar 

  • Sheng XF, He LY, Huang W (2002) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chilli and cotton. Agric Sci China 2:400–412

    Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, New York, pp 195–235

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2012) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry: soil biology. Springer-Wien, New York

    Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Srinivasrao CH, Satyanarayana T, Venkateswarulu B (2011) Potassium mining in Indian agriculture: input and output balance. Karnataka J Agric Sci 24:20–28

    Google Scholar 

  • Subhashini DV, Kumar AV (2014) Phosphate solubilizing Streptomyces spp. obtained from the rhizosphere of Ceriops decandra of Corangi mangroves. Indian J Agric Sci 84(5):560–564

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3(3):350–355

    Google Scholar 

  • Supanjani, Han HS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou S (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant and Soil 344:187–196

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Xiufang H, Jishuang C, Jiangfeng G (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu Mountain Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  Google Scholar 

  • Yadegari M, Farahani GHN, Mosadeghzad Z (2012) Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr J Agric Res 7:4716–4723

    Article  Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA, Rejali F, Nadian NH (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15(9):1310–1318

    CAS  Google Scholar 

  • Youssef GH, Seddik WMA, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. Am J Sci 6:647–660

    Google Scholar 

  • Zahra MK, Monib MS, Abdel-Al I, Heggo A (1984) Significance of soil inoculation with silicate bacteria. Zentralbl Mikrobiol 139(5):349–357

    CAS  Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium-solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7(1):41–47

    Google Scholar 

  • Zheng C, Jiang D, Liub F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67(1):222–227

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the Head of the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, for providing all the necessary facility to conduct this experiment. VSM is thankful to the University Grants Commission (UGC), New Delhi, for the fellowship during his Ph.D. work and SKM is thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, and Government of India (GOI) for the junior research fellowship (JRF) during her study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Meena, V.S. et al. (2016). Potassium-Solubilizing Microorganism in Evergreen Agriculture: An Overview. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_1

Download citation

Publish with us

Policies and ethics