Skip to main content

Phytoremediation: A Biotechnological Intervention

  • Chapter
  • First Online:
Applied Environmental Biotechnology: Present Scenario and Future Trends
  • 1498 Accesses

Abstract

Phytoremediation, a growing sector of bioremediation, exploits the natural ability of a large variety of plants to filter chemicals through their root systems and to aerate the soil, allowing different microorganisms to grow. Phytoremediation has many advantages over other existing technologies in terms of safe and nondisturbing natural surroundings of contaminated sites. The modification in technology leads to different methods of phytoremediation, including phytotransformation, rhizoremediation, phytostabilization, phytoextraction and rhizofiltration. The application of a selected method depends on the nature and site of contaminant. To understand the mechanism of hyperaccumulation, various studies have been conducted on model (Arabidopsis thaliana) and commonly grown plants such as Populus, Brassica, Hydrilla etc. in phytoremediation. Further, based on mechanism and identified genes such as those involved in uptake, sequestration, remobilization and homeostasis, transgenic plants were designed and used efficiently to remove heavy metals and organic chemicals from the soil. However, further efforts are required for advancements in efficiency and robustness of transgenic plants and to popularize the phytoremediation technology on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MA (2012) Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ Technol 33:1609–1614

    Article  CAS  Google Scholar 

  • Adams B, Anderson R, Bless D, Butler B, Conway B, Dailey A, Freed E, Gervais G, Gill M, Grosse D, Hanley J, Hathaway E, Hudiburgh G, Hoffman S, Jenkins J, Kady T, Kerr M, Lynch K, Mahmud S, McKim K, Pachon C, Purcell M, Suriano E, Tomten D, Townsend C, Walker S, Zownir A (2014) Reference guide to treatment technologies for mining-influenced water, vol EPA 542-R-14-001. Office of Superfund Remediation and Technology Innovation, Washington, D.C.

    Google Scholar 

  • Adki VS, Jadhav JP, Bapat VA (2013) Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180

    Article  CAS  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  CAS  Google Scholar 

  • Amer A, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremed 15:498–512

    Article  CAS  Google Scholar 

  • Arazi T, Sunker R, Kaplan B, Fromm HA (1999) Tobacco plasma memberance calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Google Scholar 

  • Arbaoui S, Evlard A, Mhamdi WM, Campanella B, Paul R, Bettaieb T (2013) Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation 24:563–567

    Article  CAS  Google Scholar 

  • Assunção AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, Eldik Mv, Fiers M, Schat H, Aarts MG (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 1:10296–10301

    Google Scholar 

  • Banuelos SG, Meeks WD (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777

    Article  CAS  Google Scholar 

  • Barzanti R, Colzi I, Arnetoli M, Gallo A, Pignattelli S, Gabbrielli R, Gonnelli C (2011) Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater 196:66–72

    Article  CAS  Google Scholar 

  • Bernier M, Carpentier R (1995) The action of mercury on the binding of extrinsic polypeptides associated with water oxidizing complex of photosystem II. FEBS Lett 360:251–254

    Article  CAS  Google Scholar 

  • Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC (2009) The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 151:253–261

    Article  CAS  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methyl mercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophicity and root uptake and translocation of non-ionized chemicals by barley. Pesticide Sci 13:495–504

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison SR, Reeves DR, Malaisse F (1978) Copper and cobalt in African species of Aeolanthus Mart (Plectranthinae, Labiatae). Plant Soil 50:503–507

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison SR, Reeves DR, Dudley RT, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc Lond Ser B 203:387–403

    Google Scholar 

  • Brooks RR, Trow MJ, Veillon MJ, Jaffre MJ (1981) Studies on manganese accumulating Alyxia from New Caledonia. Taxon 30:420–423

    Article  Google Scholar 

  • Che D, Meagher RB, Heaton AC, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  Google Scholar 

  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    CAS  Google Scholar 

  • Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycline. Int J Phytoremed 15:343–351

    Article  CAS  Google Scholar 

  • DeSouza MP, Pilon-Smits EAH, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 171–188

    Google Scholar 

  • Ding D, Li W, Song G, Qi H, Liu J, Tang J (2011) Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population. PLoS One 6:e25646

    Article  CAS  Google Scholar 

  • Eapen S, D’Spoza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications of Ps MTA function. Plant Mol Biol 20:1019–1028

    Article  CAS  Google Scholar 

  • Ficko SA, Rutter A, Zeeb BA (2011) Phytoextraction and uptake patterns of weathered polychlorinated biphenyl-contaminated soils using three perennial weed species. J Environ Qual 40:1870–1877

    Article  CAS  Google Scholar 

  • Foth HD (1990) Fundamentals of Soil Science, 8th edn. Wiley, New York

    Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K, Sylvestre M, Mackova M (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Fresen Environ Bull 12:309–313

    CAS  Google Scholar 

  • Gao JJ, Shen XF, Peng RH, Zhu B, Xu J, Han HJ, Yao QH (2012) Phytoremediation and phytosensing of chemical contaminant, toluene: identification of the required target genes. Mol Biol Rep 39:8159–8167

    Article  CAS  Google Scholar 

  • Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Mugnozza GS, Sabatti M (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol 31:1309–1318

    Article  CAS  Google Scholar 

  • Georgatsou E, Alexandra K (1994) Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14:3065–3075

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Trans Res 7:173–180

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron accumulation in rice seed by soya bean ferritin gene. Nat Biotechnol 17: 282–286

    Article  CAS  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, et al. (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  • He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo ZB (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol 162:424–439

    Article  CAS  Google Scholar 

  • Heaton AC, Rugh CC, Kim T, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    Article  CAS  Google Scholar 

  • Hung CY, Holliday BM, Kaur H, Yadav R, Kittur FS, Xie J (2012) Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus. Mol Biol Rep 39:7635–7646

    Article  CAS  Google Scholar 

  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638

    Article  CAS  Google Scholar 

  • Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, Eun H (2013) A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiol 161:2128–2135

    Article  CAS  Google Scholar 

  • Jordahl J, Foster L, Alvarez PJ, Schnoor J (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1381

    Article  CAS  Google Scholar 

  • Lang M, Hao M, Fan Q, Wang W, Mo S, Zhao W, Zhou J (2011) Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J Exp Bot 62:4467–4480

    Article  CAS  Google Scholar 

  • Li F, Shi J, Shen C, Chen G, Hu S, Y. YC (2009) Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 2009:251–263

    Article  Google Scholar 

  • Lyubenova L, Nehnevajova E, Herzig R, Schröder P (2009) Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environ Sci Pollut Res 16:573–581

    Article  CAS  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    Article  CAS  Google Scholar 

  • Ma TT, Teng Y, Luo YM, Christie P (2013) Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. Int J Phytoremed 15:154–167

    Article  CAS  Google Scholar 

  • Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112

    Article  CAS  Google Scholar 

  • Matsui T, Nomura Y, Takano M, Imai S, Nakayama H, Miyasaka H, Okuhata H, Tanaka S, Matsuura H, Harada K, Bamba T, Hirata K, Kato K (2011) Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants. Biosci Biotechnol Biochem 75:882–890

    Article  CAS  Google Scholar 

  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremed 14:925–938

    Article  Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7:e42640

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L and Nicotiana tabacum L plants. Theor Appl Genet 78:16–18

    Article  Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  CAS  Google Scholar 

  • Mohanty M, Patra HK (2012) Phytoremediation potential of paragrass—an in-situ approach for chromium contaminated soil. Int J Phytoremed 14:796–805

    Article  CAS  Google Scholar 

  • Mulligana CN, Yongb RN, Gibbsc BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K, Macek T (2009) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 102:29–37

    Article  CAS  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108

    Article  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Mel lytel C, Zhu Y, Tai JC, Bravo RC, et al. (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  CAS  Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120

    Google Scholar 

  • Pratas J, Favas PJ, D’Souza R, Varun M, Paul MS (2013) Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere 90:2216–2225

    Article  CAS  Google Scholar 

  • Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton AM, Stewart CNJ (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genom 9:537–547

    Article  CAS  Google Scholar 

  • Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for iron uptake from soils. Nature 397:694–697

    Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas in Central Europe. Environ Pollut Ser A 31:277–285

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurials via the chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    Article  CAS  Google Scholar 

  • Sabat SC (1996) Copper ion inhibition of electron transport activity in sodium chloride washed Photosystem II particle is partially prevented by calcium ion. Z Naturforsch 51:179–184

    CAS  Google Scholar 

  • Saiyood S, Inthorn D, Vangnai AS, Thiravetyan P (2013) Phytoremediation of bisphenol A and total dissolved solids by the mangrove plant, Bruguiera gymnorhiza. Int J Phytoremed 15:427–438

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phtoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    Article  CAS  Google Scholar 

  • Schnoor JL (1997) Phytoremediation. GWRTAC. The University of Iowa Department of Civil and Environmental Engineering Center for Global and Regional Environmental Research, Iowa

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carriera LH (1995) Phytoremediation: an emerging technology for contaminated soils. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Shaw LJ, Burns RG (2007) Influence of the rhizosphere on the biodegradation of organic xenobiotics—a case study with 2,4-dichlorophenoxyacetic acid. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. NATO science series, vol 76. Springer, Netherland, pp 5–30

    Google Scholar 

  • Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri. Environ Toxicol Water Qual 11:105–112

    Article  CAS  Google Scholar 

  • Smreczak B, Maliszewska-Kordybach B (2005) The efficiency of rhizosphere bioremediation of soils from industrial areas contaminated with polycyclic aromatic hydrocarbons (PAHs). In: Izabella Bojakowska SW, Panagiotis Balabanis (eds) Valorisation of the environment in the areas exposed to long term industrial and mining activities. Polish Geological Insitute, UstroÅ„, pp 74–76

    Google Scholar 

  • Souza FA, Dziedzic M, Cubas SA, Maranho LT (2013) Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. J Environ Manage 120:5–9

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082

    Article  CAS  Google Scholar 

  • Tan J, Wang J, Chai T, Zhang Y, Feng S, Li Y, Zhao H, H HL, Chai X (2013) Functional analyses of TaHMA2, a P(1B)-type ATPase in wheat. Plant Biotechnol J 11:420–431

    Article  CAS  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    Article  CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR, Abbas M, et al. (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Xie W-Y, Huang Q, Li G, Rensing C, Zhu Y-G (2013) Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. Int J Phytoremed 15:385–397

    Article  CAS  Google Scholar 

  • Xu J, Sun J, Du L, Liu X (2012) Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol 196:110–124

    Article  CAS  Google Scholar 

  • Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176–1181

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Weaver MA, Locke MA (2006) Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Sci 54:538–547

    Article  CAS  Google Scholar 

  • Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L (2009) Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds. Plant Physiol 151:528–540

    Article  CAS  Google Scholar 

  • Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159:3123–3128

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Akal School of Biotechnology, Eternal University, Baru Sahib and Department of Biotechnology and Allied Sciences, Jyoti Vidyapeeth Women University for providing needful resources leading to completion of chapter in present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, D., Vyas, P., Sahni, S., Sangwan, P. (2015). Phytoremediation: A Biotechnological Intervention. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_5

Download citation

Publish with us

Policies and ethics