Skip to main content
Log in

Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals

  • AREA 5.3 • PHYTOREMEDIATION • RESEARCH ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field.

Main features

The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers.

Materials and methods

Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed.

Results and discussion

We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited.

Conclusions

Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photo oxidative stress and amelioration of defence systems in plants. CRC, Boca Raton, FL, pp 77–104

    Google Scholar 

  • Baisak R, Rana DA, Acharya PBB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Phys 17:21–34

    CAS  Google Scholar 

  • Boardman R, McGuire DO (1990) The role of zinc in forestry. I. Zinc in forest environments, ecosystems and tree nutrition. For Ecol Manag 37:167–205

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88(11):1707–1719

    Article  CAS  Google Scholar 

  • Clemens S, Krämer U (2003) Neue Hoffnung für Schwermetall-belastete Böden. Eurek-Alert. Presseinformation der Max-Planck-Gesellschaft, Dezember 2003

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol 25:665–671

    Article  CAS  Google Scholar 

  • Daniel V (1993) Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol 28:173–207

    Article  CAS  Google Scholar 

  • Dixit V, Pandey R, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  Google Scholar 

  • Dixon PD, Cole DJ, Edwards R (1998) Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol Biol 36:75–87

    Article  CAS  Google Scholar 

  • Foyer C (1993) Ascorbic acid. In: Alscher RG and Hess JL (eds) Antioxidants in higher plants. CRC Press Boca Raton, Ann Arbor, London, Tokyo, pp. 31–58

    Google Scholar 

  • Foyer CH, Looez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Phys Plant 100:241–254

    Article  CAS  Google Scholar 

  • Franzius V (1994) Aktuelle Entwicklungen zur Altlastenproblematik in der Bundesrepublik Deutschland. Umwelt Technologie Aktuell 6:443–449

    Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and nontolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116:59–69

    CAS  Google Scholar 

  • Guadagnini M (2000) In vitro-Breeding for Metal-Accumulation in 2 Tobacco (Nicotiana tabacum) Cultivars. Inaugural-Dissertation No. 1288, Mathematisch-Naturwissenschaftliche Fakultät, Universität Freiburg, Switzerland

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic and acid formation. J Biol Chem 249:7130–713

    CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600

    Article  CAS  Google Scholar 

  • Herzig & Guadagnini (1997) Chancen der Phytoextraktion. Sanfte Bodensanierung von Schwermetallen mit Hilfe von biotechnisch verbesserten Akkumulatorpflanzen. In-vitro-Züchtung, Selektion und Erprobung von metal-akkumulierenden Tabakvarianten zur Bodensanierung. TerraTech. Zeitschrift für Altlasten und Bodenschutz 2+3, pp 12–15. Vereinigte Fachverlage Mainz, Germany

  • Herzig R, Nehnevajova E, Vangrosveld J, Ruttens A (2005) Evaluation of phytoremediation. In: PHYTAC Final Report 2005: Development of Systems to Improve Phytoremediation of Metal Contaminated Soils through Improved Phytoaccumulation, 249 pp. Quality of Life and Managing of Living Organisms (QLRT-2001-00429). 5th Framework Programme Brussels and Office fédéral de l'éducation et de la science Berne (BBW-Grant 1.0304), pp 161–190

  • Horvath G, Droppa M, Oravecz A, Raskin VI, Marder JB (1996) Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta 199:238–243

    Article  CAS  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  CAS  Google Scholar 

  • Karlaganis G (2001) Swiss concept of soil protection, Commentary on the ordinance of 1 July 1998 relating to impacts on the soil (OIS). J Soils Sediments 1:1–16

    Article  Google Scholar 

  • Kuzniak E, Ekladowska M (1999) The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Sci 148:69–76

    Article  CAS  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangrosveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea may L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG (1989) The role of glutathione and glutathione S-transferases in pesticide metabolism, selectivity and mode of action in plants and insects. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical biochemical and medical aspects, Vol IIIB, Ser: Enzyme and Cofactors. Wiley, New York, pp 153–196

    Google Scholar 

  • Landwirtschaftliche Beratungszentrale Lindau (2004) Wirz Kalender für das landwirtschaftliche Unternehmen

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Polon 48:687–698

    CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Marschner H (2001) Mineral nutrition of higher plants. Academic, Cambridge

    Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102:1193–1201

    Article  CAS  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:1–13

    Article  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459

    CAS  Google Scholar 

  • Nabors MW (1990) Environmental stress resistance. In: Dix PJ (ed), Plant cell line selection. Procedures and Applications. VC H Publisher, pp 167–186

  • Nehnevajova E (2005) Non-GMO approach for the improvement of heavy metal accumulation and extraction of high yielding crop species for efficient phytoextraction of contaminated soil. These N°3414

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartimentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53(372):1283–1304

    Article  CAS  Google Scholar 

  • Pendias AK, Pendias H (1989) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Polle A, Krings B, Rennenberg H (1989) Superoxide dismutase activity in needles of Norwegean spruce trees (Picea abies L.). Plant Physiol 90:1310–1315

    Article  CAS  Google Scholar 

  • Rauser W (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Article  CAS  Google Scholar 

  • Reinheckel T, Noack H, Lorenz S, Wissedel I, Augustin W (1998) Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radic Res 29:297–305

    Article  CAS  Google Scholar 

  • Ruano A, Poschenrieder C, Barcelo J (1988) Growth and biomass partitioning in zinc-toxic bush beans. J Plant Nutr 11:577–588

    Article  CAS  Google Scholar 

  • Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    Article  CAS  Google Scholar 

  • Sawicki R, Singh SP, Mondal AK, Benes H, Zimniak P (2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem J 370:661–669

    Article  CAS  Google Scholar 

  • Scalla R, Roulet A (2002) Cloning and characterization of a glutathione S-transferase induced by a herbicide safener in barley (hordeum vulgare). Physiologia Plantarum 116:336–344

    Article  CAS  Google Scholar 

  • Schnoor JL, McCutcheon SC, Wolfe NL, Carreia LH (1995) Phytoremediation of organic and nutrient contaminants. EST 29(7):318–323

    Article  Google Scholar 

  • Schröder P, Berkau C (1993) Characterization of cytosolic glutathione S-transferase in spruce needles. Bot Acta 106:301–306

    Google Scholar 

  • Schröder P, Götzberger C (1997) Partial purification and characterisation of glutathione S-transferase isoenzymes from the leaves of Juniperus communis, Larix decidua and Taxus baccata. Appl Bot 71:31–37

    Google Scholar 

  • Schröder P, Fischer C, Debus R, Wenzel A (2002) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environ Sci Pollut Res 10:225–234

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon—mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem 66:1551–1559

    Article  CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269(5232):1851–1854

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipids membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  CAS  Google Scholar 

  • Tully DB, Collins BJ, Overstreet JD, Smith CS, Dinse GE, Mumatz MM, Chapin RE (2000) Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Tox Appl Pharmacol 168:79–90

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters C (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ. 13:195–206

    Article  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164:645–655

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist 132:361–373

    Article  CAS  Google Scholar 

  • Zhongren N, Jijun L, Jianming Z, Guodong C (2002) Cadmium and zinc interactions and their transfer in soil–crop system under actual field conditions. Sci Total Environ 285:187–195

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Michaela Saur, Christin Hänsel, and Sara Bergenter for the transport and harvesting assistance. Funding for Lyudmila Lyubenova by a grant from the Bavarian State Ministry for Education and Arts in the frame of the BAYHOST program is gratefully accepted. This cooperative work was stimulated by COST Action 859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schröder.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubenova, L., Nehnevajova, E., Herzig, R. et al. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environ Sci Pollut Res 16, 573–581 (2009). https://doi.org/10.1007/s11356-009-0175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-009-0175-8

Keywords

Navigation