Skip to main content

The Plant Nucleolus

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

The majority of an actively dividing cell’s metabolic activity is devoted to ribosome biogenesis, and most traffic in and out of the nucleus is targeted to or from the nucleolus. It is therefore not surprising that the nucleolus is the most prominent and easily observable structure within the nucleus. It has been studied for more than two hundred years, and is still an active subject of research and is still generating surprising discoveries. This chapter summarizes the current state of knowledge of the nucleolus with particular reference to recent developments, and concentrating on work from plants where appropriate. Topics covered include the organization of ribosomal rDNA in nucleolar chromatin, epigenetic phenomena, nucleolar dynamics and non-conventional functions of the nucleolus, particularly in its involvement in various RNA pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun D (2005) Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 16:2862–2871

    Article  PubMed  CAS  Google Scholar 

  • Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ (2004) The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell 3:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Beven AF, Lee R, Razaz M, Leader DJ, Brown JW, Shaw PJ (1996) The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 109:1241–1251

    PubMed  CAS  Google Scholar 

  • Birnstiel ML, Hyde BB (1963) Protein synthesis by isolated pea nucleoli. J Cell Biol 18:41–50

    Article  PubMed  CAS  Google Scholar 

  • Birnstiel ML, Chipchase M, Bonner J (1961) Incorporation of leucine-h3 into subnuclear components of isolated pea nuclei. Biochem Biophys Res Commun 6:161–166

    Article  PubMed  CAS  Google Scholar 

  • Birnstiel ML, Chipchase MI, Hyde BB (1963) The nucleolus, a source of ribosomes. Biochim Biophys Acta 76:454–462

    Article  PubMed  CAS  Google Scholar 

  • Bleichert F, Gagnon KT, Brown BA II, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ (2009) A dimeric structure for archaeal box c/d small ribonucleoproteins. Science 325:1384–1387

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, Lam YW, Lamont D, Lamond AI (2009) A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9:457–470

    PubMed  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307

    PubMed  CAS  Google Scholar 

  • Brown JWS, Shaw PJ (1998) Small nucleolar RNAs and pre-rRNA processing in plants. Plant Cell 10:649–657

    PubMed  CAS  Google Scholar 

  • Brown JW, Shaw PJ (2008) The role of the plant nucleolus in pre-mRNA processing. Curr Top Microbiol Immunol 326:291–311

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Echeverria M, Qu LH (2003) Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci 8:42–49

    Article  PubMed  CAS  Google Scholar 

  • Busch H, Smetana K (1970) The nucleolus. Academic, New York

    Google Scholar 

  • Caburet S, Conti C, Schurra C, Lebofsky R, Edelstein SJ, Bensimon A (2005) Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Sinha K, Perumal K, Gu J, Reddy R (1998) Accurate 3′ end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro. J Biol Chem 273:35023–35031

    Article  PubMed  CAS  Google Scholar 

  • Custodio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M (2004) In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10:622–633

    Article  PubMed  CAS  Google Scholar 

  • Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ (2002) A large nucleolar u3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275–281

    Article  PubMed  CAS  Google Scholar 

  • Emmott E, Rodgers M, Macdonald A, McCrory S, Ajuh P, Hiscox JA (2010) Quantitative proteomics using stable isotope labeling with amino acids in cell culture (SILAC) reveals changes in the cytoplasmic, nuclear and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 9:1920–1936

    Article  PubMed  CAS  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  PubMed  CAS  Google Scholar 

  • Fatica A, Tollervey D (2003) Insights into the structure and function of a guide rnp. Nat Struct Biol 10:237–239

    Article  PubMed  CAS  Google Scholar 

  • Fontana F (1781) Traite sur le venin de la viper, sur les poisons americains, sur le laurier-cerise et sur quelques autres poisons vegetaux. Gibelin, Florence

    Google Scholar 

  • Gautier T, Robert-Nicoud M, Guilly MN, Hernandez-Verdun D (1992) Relocation of nucleolar proteins around chromosomes at mitosis – a study by confocal laser scanning microscopy. J Cell Sci 102:729–737

    PubMed  CAS  Google Scholar 

  • Gimenez-Martin G, De la Torre C, Fernandez-Gomez ME, Gonzalez-Fernandez A (1974) Experimental analysis of nucleolar reorganization. J Cell Biol 60:502–507

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi P, Wells B, Beven AF, Shaw PJ (2001) Single ribosomal transcription units are linear, compacted christmas trees in plant nucleoli. Plant J 27:223–233

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4:641–649

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis, vol 12, Cell biology monographs. Springer, Wien

    Book  Google Scholar 

  • Harris H (1967) The reactivation of the red cell nucleus. J Cell Sci 2:23–32

    PubMed  CAS  Google Scholar 

  • Heitz E (1931) Die Ursache der gesetzmäßigen Zahl, Lage, Form und Größe pflanzlicher Nukleolen. Planta 12:775–844

    Article  Google Scholar 

  • Hernandez-Verdun D (2006) Nucleolus: from structure to dynamics. Histochem Cell Biol 125:127–137

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D, Gautier T (1994) The chromosome periphery during mitosis. Bioessays 16:179–185

    Article  PubMed  CAS  Google Scholar 

  • Highett MI, Beven AF, Shaw PJ (1993a) Localization of 5S genes and transcripts in Pisum sativum nuclei. J Cell Sci 105:1151–1158

    PubMed  CAS  Google Scholar 

  • Highett MI, Rawlins DJ, Shaw PJ (1993b) Different patterns of rDNA distribution in Pisum sativum nucleoli correlate with different levels of nucleolar activity. J Cell Sci 104:843–852

    CAS  Google Scholar 

  • Hiscox JA, Whitehouse A, Matthews DA (2010) Nucleolar proteomics and viral infection. Proteomics 10:4077–4086

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Hassan AB, Jackson DA, Cook PR (1993) Visualization of replication factories attached to a nucleoskeleton. Cell 73:361–373

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Cook PR, Schofer C, Mosgoller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  CAS  Google Scholar 

  • Huang S, Rothblum LI, Chen D (2006) Ribosomal chromatin organization. Biochem Cell Biol 84:444–449

    Article  PubMed  CAS  Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2004) The case for nuclear translation. J Cell Sci 117:5713–5720

    Article  PubMed  CAS  Google Scholar 

  • Ideue T, Azad AK, Yoshida J, Matsusaka T, Yanagida M, Ohshima Y, Tani T (2004) The nucleolus is involved in mRNA export from the nucleus in fission yeast. J Cell Sci 117:2887–2895

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MR, Pederson T (1998) Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci USA 95:7981–7986

    Article  PubMed  CAS  Google Scholar 

  • Jarrous N, Wolenski JS, Wesolowski D, Lee C, Altman S (1999) Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 146:559–572

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Schneiter R, Hitomi M, Tartakoff AM (1995) Mutations in nucleolar proteins lead to nucleolar accumulation of polyA +RNA in Saccharomyces cerevisiae. Mol Biol Cell 6:1103–1110

    PubMed  CAS  Google Scholar 

  • Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JW (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins upf2 and upf3 are enriched in the Arabidopsis nucleolus. Plant Cell 21:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Spensley M, Choi SK, Calixto CP, Pendle AF, Koroleva O, Shaw PJ, Brown JW (2010) Plant u13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli. Nucleic Acids Res 38:3054–3067

    Article  PubMed  CAS  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Malinsky J, Pliss A, Masata M, Vecerova J, Fialova M, Bednar J, Raska I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157:743–748

    Article  PubMed  CAS  Google Scholar 

  • Kopp K, Huang S (2005) Perinucleolar compartment and transformation. J Cell Biochem 95:217–225

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Brown JW, Shaw PJ (2009a) Localization of eif4a-III in the nucleolus and splicing speckles is an indicator of plant stress. Plant Signal Behav 4:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown JW, Shaw PJ (2009b) Dynamic behavior of Arabidopsis eif4a-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21:1592–1606

    Article  PubMed  CAS  Google Scholar 

  • Kos M, Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37:809–820

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Sleeman JE (2003) Nuclear substructure and dynamics. Curr Biol 13:R825–R828

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Leitch AR, Mosgoller W, Shi M, Heslop-Harrison JS (1992) Different patterns of rDNA organization at interphase in nuclei of wheat and rye. J Cell Sci 101:751–757

    PubMed  Google Scholar 

  • Lejeune F, Ranganathan AC, Maquat LE (2004) Eif4g is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 11:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Lamond AI (2003) The dynamics of the nucleolus. Crit Rev Eukaryot Gene Expr 13:39–54

    Article  PubMed  CAS  Google Scholar 

  • Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE (2006) An argonaute4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282:2082–2085

    Article  PubMed  CAS  Google Scholar 

  • Mais C, Wright JE, Prieto JL, Raggett SL, McStay B (2005) Ubf-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Neubert M, Grummt I (2008) The structure of NORC-associated RNA is crucial for targeting the chromatin remodelling complex NORC to the nucleolus. EMBO Rep 9:774–780

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikrosk Anat 21:294–328

    Article  Google Scholar 

  • McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23

    Article  PubMed  Google Scholar 

  • Melcak I, Risueno MC, Raska I (1996) Ultrastructural nonisotopic mapping of nucleolar transcription sites in onion protoplasts. J Struct Biol 116:253–263

    Article  PubMed  CAS  Google Scholar 

  • Melese T, Xue Z (1995) The nucleolus―an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  PubMed  CAS  Google Scholar 

  • Miller OLJ, Beatty RR (1969) Visualization of nucleolar genes. Science 164:955–957

    Article  PubMed  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H, Sasaki T, Matsumoto T (2008) Characterization of internal structure of the nucleolar organizing region in rice (Oryza sativa L.). Cytogenet Genome Res 121:282–285

    Article  PubMed  CAS  Google Scholar 

  • Nathanson L, Xia T, Deutscher MP (2003) Nuclear protein synthesis: a re-evaluation. RNA 9:9–13

    Article  PubMed  CAS  Google Scholar 

  • Nissan TA, Galani K, Maco B, Tollervey D, Aebi U, Hurt E (2004) A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Mol Cell 15:295–301

    Article  PubMed  CAS  Google Scholar 

  • Oakes M, Nogi Y, Clark MW, Nomura M (1993) Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase-I. Mol Cell Biol 13:2441–2455

    PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Hingorani K, Szebeni A (2002) Conventional and nonconventional roles of the nucleolus. Int Rev Cytol 219:199–266

    Article  PubMed  CAS  Google Scholar 

  • Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL (2004) Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 16:943–954

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JW, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Lewandowski LB, Pederson T (2002) Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis. J Cell Biol 159:411–418

    Article  PubMed  CAS  Google Scholar 

  • Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  PubMed  CAS  Google Scholar 

  • Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673–684

    Article  PubMed  CAS  Google Scholar 

  • Prieto JL, McStay B (2008) Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116–2123

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006a) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006b) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18:325–334

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  PubMed  CAS  Google Scholar 

  • Rudra D, Warner JR (2004) What better measure than ribosome synthesis? Genes Dev 18:2431–2436

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11:52–58

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localization of RNA polymerase-I in interphase cells and mitotic chromosomes by light and electron-microscopic immunocytochemstry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Weisenberger D (1994) The nucleolus. Curr Opin Cell Biol 6:354–359

    Article  PubMed  CAS  Google Scholar 

  • Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D, Diaz JJ (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    Article  PubMed  CAS  Google Scholar 

  • Schneiter R, Kadowaki T, Tartakoff AM (1995) mRNA transport in yeast: time to reinvestigate the functions of the nucleolus. Mol Biol Cell 6:357–370

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14:2896–2906

    PubMed  CAS  Google Scholar 

  • Silva M, Pereira HS, Bento M, Santos AP, Shaw P, Delgado M, Neves N, Viegas W (2008) Interplay of ribosomal DNA loci in nucleolar dominance: dominant NORs are up-regulated by chromatin dynamics in the wheat-rye system. PLoS One 3:e3824

    Article  PubMed  CAS  Google Scholar 

  • Steiner-Mosonyi M, Mangroo D (2004) The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae. Biochem J 378:809–816

    Article  PubMed  CAS  Google Scholar 

  • Thompson WF, Beven AF, Wells B, Shaw PJ (1997) Sites of rDNA transcription are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J 12:571–581

    Article  PubMed  CAS  Google Scholar 

  • Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Tucker S, Vitins A, Pikaard CS (2010) Nucleolar dominance and ribosomal RNA gene silencing. Curr Opin Cell Biol 22:351–356

    Article  PubMed  CAS  Google Scholar 

  • Valentin G (1839) Repertorium für Anatomie und Physiologie, vol 4. Huber und Co., Bern/St. Gallen

    Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Wong JM, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4:731–736

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chua NH (2009) Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. Plant Cell 21:3270–3279

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Shaw, P. (2013). The Plant Nucleolus. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_5

Download citation

Publish with us

Policies and ethics