Skip to main content
Log in

Nucleolus: from structure to dynamics

  • Reviews
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The nucleolus, a large nuclear domain, is the ribosome factory of the cells. Ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins in the nucleolus, and the ribosome subunits are then transported to the cytoplasm. In this review, the structural organization of the nucleolus and the dynamics of the nucleolar proteins are discussed in an attempt to link both information. By electron microscopy, three main nucleolar components corresponding to different steps of ribosome biogenesis are identified and the nucleolar organization reflects its activity. Time-lapse videomicroscopy and fluorescent recovery after photobleaching (FRAP) demonstrate that mobility of GFP-tagged nucleolar proteins is slower in the nucleolus than in the nucleoplasm. Fluorescent recovery rates change with inhibition of transcription, decreased temperature and depletion of ATP, indicating that recovery is correlated with cell activity. At the exit of mitosis, the nucleolar processing machinery is first concentrated in prenucleolar bodies (PNBs). The dynamics of the PNBs suggests a steady state favoring residence of processing factors that are then released in a control- and time-dependent manner. Time-lapse analysis of fluorescence resonance energy transfer demonstrates that processing complexes are formed in PNBs. Finally, the nucleolus appears at the center of several trafficking pathways in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun DD (2005) Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 16:2862–2871

    Article  PubMed  CAS  Google Scholar 

  • Azum-Gélade M-C, Noaillac-Depeyre J, Caizergues-Ferrer M, Gas N (1994) Cell cycle redistribution of U3 snRNA and fibrillarin. Presence in the cytoplasmic nucleolus remnant and in the prenucleolar bodies at telophase. J Cell Sci 107:463–475

    PubMed  Google Scholar 

  • Bell P, Dabauvalle MC, Scheer U (1992) In vitro assembly of prenucleolar bodies in Xenopus egg extract. J Cell Biol 118:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12:2463–2468

    PubMed  CAS  Google Scholar 

  • Biggiogera M, Fakan S, Kaufmann SH, Black A, Shaper JH, Busch H (1989) Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus. J Histochem Cytochem 37:1371–1374

    PubMed  CAS  Google Scholar 

  • Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonne R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16:777–787

    Article  PubMed  CAS  Google Scholar 

  • Bubulya PA, Prasanth KV, Deerinck TJ, Gerlich D, Beaudouin J, Ellisman MH, Ellenberg J, Spector DL (2004) Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei. J Cell Biol 167:51–63

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2:107–112

    Article  Google Scholar 

  • Carmo-Fonseca M, Platani M, Swedlow JR (2002) Macromolecular mobility inside the cell nucleus. Trends Cell Biol 12:491–495

    Article  PubMed  CAS  Google Scholar 

  • Chan PK, Qi Y, Amley J, Koller CA (1996) Quantitation of the nucleophosmin/B23-translocation using imaging analysis. Cancer Lett 100:191–197

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    Article  PubMed  CAS  Google Scholar 

  • Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat cell Biol 1:82–87

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    Article  PubMed  CAS  Google Scholar 

  • Cockell MM, Gasser SM (1999) The nucleolus: nucleolar space for rent. Curr Biol 9:R575–R576

    Article  PubMed  CAS  Google Scholar 

  • Colau G, Thiry M, Leduc V, Bordonne R, Lafontaine DL (2004) The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology. Mol Cell Biol 24:7976–7986

    Article  PubMed  CAS  Google Scholar 

  • David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D (2001) Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 20:5951–5963

    Article  PubMed  CAS  Google Scholar 

  • Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S (2000) Initiation of nucleolar assembly is independent of RNA polmerase I transcription. Mol Biol Cell 11:2705–2717

    PubMed  CAS  Google Scholar 

  • Dundr M, Olson MOJ (1998) Partially processed pre-rRNA is preserved in association with processing components in nucleolus derived foci during mitosis. Mol Biol Cell 9:2407–2422

    PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T, Olson MOJ (2000) The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol 150:433–446

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842

    Article  PubMed  CAS  Google Scholar 

  • Emiliani V, Sanvitto D, Tramier M, Piolot T, Petrasek Z, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl Phys Lett 83:2471–2473

    Article  CAS  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  PubMed  CAS  Google Scholar 

  • Finch RA, Chan PK (1996) ATP depletion affects NPM translocation and exportation of rRNA from nuclei. Biochem Biophys Res Commun 222:553–558

    Article  PubMed  CAS  Google Scholar 

  • Finch RA, Revankar GR, Chan PK (1993) Nucleolar localization of nucleophosmin/B23 requires GTP. J Biol Chem 268:5823–5827

    PubMed  CAS  Google Scholar 

  • Fomproix N, Gébrane-Younès J, Hernandez-Verdun D (1998) Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J Cell Sci 111:359–372

    PubMed  CAS  Google Scholar 

  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    Article  PubMed  CAS  Google Scholar 

  • Ganot P, Jady BE, Bortolin M-L, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19:6906–6917

    PubMed  CAS  Google Scholar 

  • Gautier T, Dauphin-Villemant C, André C, Masson C, Arnoult J, Hernandez-Verdun D (1992a) Identification and characterization of a new set of nucleolar ribonucleoproteins which line the chromosomes during mitosis. Exp Cell Res 200:5–15

    Article  PubMed  CAS  Google Scholar 

  • Gautier T, Masson C, Quintana C, Arnoult J, Hernandez-Verdun D (1992b) The ultrastructure of the chromosome periphery in human cells. An in situ study using cryomethods in electron microscopy. Chromosoma 101:502–510

    Article  PubMed  CAS  Google Scholar 

  • Gautier T, Robert-Nicoud M, Guilly M-N, Hernandez-Verdun D (1992c) Relocation of nucleolar proteins around chromosomes at mitosis—a study by confocal laser scanning microscopy. J Cell Sci 102:729–737

    PubMed  CAS  Google Scholar 

  • Gautier T, Fomproix N, Masson C, Azum-Gélade MC, Gas N, Hernandez-Verdun D (1994) Fate of specific nucleolar perichromosomal proteins during mitosis: cellular distribution and association with U3 snoRNA. Biol Cell 82:81–93

    Article  PubMed  CAS  Google Scholar 

  • Gébrane-Younès J, Sirri V, Junéra HR, Roussel P, Hernandez-Verdun D (2005) Nucleolus: an essential nuclear domain. In: Diekmann PHaS (ed) Visions of the cell nucleus. ASP, CA, pp 120–135

    Google Scholar 

  • Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17:1476–1486

    Article  PubMed  CAS  Google Scholar 

  • Granick D (1975) Nucleolar necklaces in chick embryo fibroblast cells. II. Microscope observations of the effect of adenosine analogues on nucleolar necklace formation. J Cell Biol 65:418–427

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026

    PubMed  CAS  Google Scholar 

  • Guillot PV, Martin S, Pombo A (2005) The organization of transcription in the nucleus of mammalian cells. In: Diekmann PHaS (eds) Visions of the cell nucleus. ASP, CA, pp 95–105

    Google Scholar 

  • Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224:163–173

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Hayman DL, Schmid M (1991) Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res 193:78–86

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer, Berlin Heidelberg New York, pp 1–268

    Google Scholar 

  • Hadjiolova KV, Hadjiolov A, Bachelerie J-P (1995) Actinomycin D stimulates the transcription of rRNA minigenes transfected into mouse cells. Applications for the in vivo hypersensitivity of rRNA gene transcription. Eur J Biochem 228:605–615

    Article  PubMed  CAS  Google Scholar 

  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2004) Behavior of the nucleolus during mitosis. Kluwer Academic, Dordrecht, pp 41–57

    Google Scholar 

  • Hernandez-Verdun D, Junéra HR (1995) The nucleolus. In: Principles of medical biology, cellular organels, vol 2. Jai Press, Greenwich, pp 73–92

  • Hozak P, Novak JT, Smetana K (1989) Three-dimensional reconstructions of nucleolus-organizing regions in PHA-stimulated human lymphocytes. Biol Cell 66:225–233

    Article  PubMed  CAS  Google Scholar 

  • Hozàk P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  Google Scholar 

  • Isaac C, Yang Y, Meier T (1998) Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 142:319–329

    Article  PubMed  CAS  Google Scholar 

  • Janicki SM, Spector DL (2003) Nuclear choreography: interpretations from living cells. Curr Opin Cell Biol 15:149–157

    Article  PubMed  CAS  Google Scholar 

  • Jarrous N, Wolenski D, Wesolowski D, Lee C, Altman S (1999) Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 146:559–571

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Garcia LF, Segura-Valdez MdL, Ochs RL, Rothblum LI, Hannan R, Spector DL (1994) Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol Biol Cell 5:955–966

    PubMed  Google Scholar 

  • Junéra HR, Masson C, Géraud G, Hernandez-Verdun D (1995) The three-dimensional organization of ribosomal genes and the architecture of the nucleoli vary with G1, S and G2 phases. J Cell Sci 108:3427–3441

    PubMed  Google Scholar 

  • Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D (1997) Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 8:145–156

    PubMed  Google Scholar 

  • Le Panse S, Masson C, Héliot L, Chassery J-M, Junéra HR, Hernandez-Verdun D (1999) 3-D organization of single ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 112:2145–2154

    CAS  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Article  PubMed  CAS  Google Scholar 

  • Louvet E, Junera HR, Le Panse S, Hernandez-Verdun D (2005) Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 304:457–470

    Article  PubMed  CAS  Google Scholar 

  • Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–309

    Article  PubMed  CAS  Google Scholar 

  • Mélèse T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  PubMed  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  • Ochs RL, Lischwe MA, Shen E, Caroll RE, Busch H (1985a) Nucleologenesis: composition and fate of prenucleolar bodies. Chromosoma 92:330–336

    Article  PubMed  CAS  Google Scholar 

  • Ochs RL, Lischwe MA, Spohn WH, Busch H (1985b) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–134

    PubMed  CAS  Google Scholar 

  • Okuwaki M, Tsujimoto M, Nagata K (2002) The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 13:2016–2030

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Olson MOJ, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189–196

    Article  PubMed  CAS  Google Scholar 

  • Pébusque MJ, Seïte (1981) Electron microscopic studies of silver-stained proteins in nucleolar organizer regions: location in nucleoli of rat sympathetic neurons during light and dark periods. J Cell Sci 51:85–94

    PubMed  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Pinol-Roma S (1999) Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis. Mol Biol Cell 10:77–90

    PubMed  CAS  Google Scholar 

  • Platani M, Golberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151:1561–1574

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T (2000) Signal recognition particle components in the nucleolus. Proc Natl Acad Sci USA 97:55–60

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Lewandowski LB, Pederson T (2002) Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis. J Cell Biol 159:411–418

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie J-P, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Puvion E, Bachellerie J-P (1997) Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with 5′ETS leader probe. Chromosoma 105:496–505

    PubMed  CAS  Google Scholar 

  • Roix J, Misteli T (2002) Genomes, proteomes, and dynamic networks in the cell nucleus. Histochem Cell Biol 118:105–116

    PubMed  CAS  Google Scholar 

  • Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  PubMed  CAS  Google Scholar 

  • Savino TM, Bastos R, Jansen E, Hernandez-Verdun D (1999) The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 112:1889–1900

    PubMed  CAS  Google Scholar 

  • Savino TM, Gébrane-Younès J, De Mey J, Sibarita J-B, Hernandez-Verdun D (2001) Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 153:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11:385–390

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localisation of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    Article  PubMed  CAS  Google Scholar 

  • Schul W, de Jong L, van Driel R (1998) Nuclear neighbours: the spatial and functional organization of genes and nuclear domains. J Cell Biochem 70:159–171

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (2000) In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol 148:259–270

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Hernandez-Verdun D, Roussel P (2002) Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 156:969–981

    Article  PubMed  CAS  Google Scholar 

  • Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associated with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW (2000) Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol 151:653–662

    Article  PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Tycowski KT, Steitz JA (1996) Ribosomal RNA processing in eukaryotes. In: Ribosomal RNA: structure, evolution, processing, and function in protein biosynthesis. CRC Press, New York, pp 469–490

  • Spector DL (2001) Nuclear domains. J Cell Sci 114:2891–2893

    PubMed  CAS  Google Scholar 

  • Strouboulis J, Wolffe AP (1996) Functional compartmentalization of the nucleus. J Cell Sci 109:1991–2000

    PubMed  CAS  Google Scholar 

  • Thiry M, Goessens G (1996) The nucleolus during the cell cycle. Springer, Berlin Heidelberg New York, p 146

    Google Scholar 

  • Thiry M, Lafontaine DL (2005) Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15:194–199

    Article  PubMed  CAS  Google Scholar 

  • Tollervey D (1996) Transacting factors in ribosome synthesis. Exp Cell Res 229:226–232

    Article  PubMed  CAS  Google Scholar 

  • Tsai RY, McKay RD (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168:179–184

    Article  PubMed  CAS  Google Scholar 

  • Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D (1998) Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 142:1167–1180

    Article  PubMed  CAS  Google Scholar 

  • Visitin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377

    Article  Google Scholar 

  • Weisenberger D, Scheer U (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J Cell Biol 129:561–575

    Article  PubMed  CAS  Google Scholar 

  • Zatsepina OV, Todorov IT, Philipova RN, Krachmarov CP, Trendelenburg MF, Jordan EG (1997) Cell cycle-dependent translocations of a major nucleolar phosphoprotein, B23, and some characteristics of its variants. Eur J Cell Biol 73:58–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Myriam Barre for help in photographic work and A. L. Haenni for critical reading of the paper. This work was supported in part by grants from the Centre National de la Recherche Scientifique and the Association pour la Recherche sur le Cancer (Contract 3303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danièle Hernandez-Verdun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez-Verdun, D. Nucleolus: from structure to dynamics. Histochem Cell Biol 125, 127–137 (2006). https://doi.org/10.1007/s00418-005-0046-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0046-4

Keywords

Navigation