Skip to main content

Advertisement

Log in

The moving parts of the nucleolus

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The cell nucleolus is the subnuclear body in which ribosomal subunits are assembled, and it is also the location of several processes not related to ribosome biogenesis. Recent studies have revealed that nucleolar components move about in a variety of ways. One class of movement is associated with ribosome assembly, which is a vectorial process originating at the sites of transcription in the border region between the fibrillar center and the dense fibrillar component. The nascent preribosomal particles move outwardly to become the granular components where further maturation takes place. These particles continue their travel through the nucleoplasm for eventual export to the cytoplasm to become functional ribosomes. In a second kind of motion, many nucleolar components rapidly exchange with the nucleoplasm. Thirdly, nucleolar components engage in very complex movements when the nucleolus disassembles at the beginning of mitosis and then reassembles at the end of mitosis. Finally, many other cellular and viral macromolecules, which are not related to ribosome assembly, also pass through or are retained by the nucleolus. These are involved in nontraditional roles of the nucleolus, including regulation of tumor suppressor and oncogene activities, signal recognition particle assembly, modification of small RNAs, control of aging, and modulating telomerase function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    Article  CAS  PubMed  Google Scholar 

  • Bertrand E, Fournier MJ (2004) The snoRNPs and related machines: ancient devices that mediate maturation of rRNAs and other RNAs. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 223–257

    Google Scholar 

  • Busch H, Smetana K (1970) The nucleolus. Academic, New York

    Google Scholar 

  • Chan PK, Qi Y, Amley J, Koller CA (1996) Quantitation of the nucleophosmin/B23-translocation using imaging analysis. Cancer Lett 100:191–197

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S (2005) Condensed mitotic chromatin is accessible to the transcription machinery and chromatin structural proteins. J. Cell Biol (in press)

  • Cheutin T, O’Donohue MF, Beorchia A, Vandelaer M, Kaplan H, Defever B, Ploton D, Thiry M (2002) Three-dimensional organization of active rRNA genes within the nucleolus. J Cell Sci 115:3297–3307

    Article  CAS  PubMed  Google Scholar 

  • Cheutin T, Misteli T, Dundr M (2004) The dynamics of nucleolar components. In: Olson MOJ (eds) The nucleolus. Landes Bioscience, Georgetown, pp 29–40

    Google Scholar 

  • Chooi WY, Leiby KR (1981) An electron microscopic method for localization of ribosomal proteins during transcription of ribosomal DNA: a method for studying protein assembly. P Natl Acad Sci USA 78:4823–4827

    Article  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533

    Article  CAS  PubMed  Google Scholar 

  • Daelemans D, Costes SV, Cho EH, Erwin-Cohen RA, Lockett S, Pavlakis GN (2004) In vivo HIV-1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. J Biol Chem 279:50167–50175

    Article  CAS  PubMed  Google Scholar 

  • Daniely Y, Borowiec JA (2000) Formation of a complex between nucleolin and replication protein a after cell stress prevents initiation of DNA replication. J Cell Biol 149:799-809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David-Pfeuty T, Nouvian-Dooghe Y (2002) Human p14(Arf): an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene 21:6779–6790

    Article  CAS  PubMed  Google Scholar 

  • Dela Cruz J, Kressler D, Linder P (2004) Ribosomal subunit assembly In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 258–285

    Google Scholar 

  • Derenzini M, Treré D, Pession A, Govoni M, Sirri V, Chieco P (2000) Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J Pathol 191:181–186

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  CAS  PubMed  Google Scholar 

  • DiMario PJ (2004) Cell and molecular biology of nucleolar assembly and disassembly. Int Rev Cytol 239:99–178

    Article  CAS  PubMed  Google Scholar 

  • Dundr M, Misteli T (2002) Nucleolomics: an inventory of the nucleolus. Mol Cell 9:5–7

    Article  CAS  PubMed  Google Scholar 

  • Dundr M, Misteli T (2003) Measuring dynamics of nuclear proteins by photobleaching. Current Protocols in Cell Biology, Unit 13.5 (1–18), Supplement 18.

  • Dundr M, Misteli T (2004) Transcriptional complexity from dynamic interaction networks in vivo. Current Genom 5(7):559–566

    Article  CAS  Google Scholar 

  • Dundr M, Olson MO (1998) Partially processed pre-rRNA is preserved in association with processing components in nucleolus-derived foci during mitosis. Mol Biol Cell 9:2407–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundr M, Misteli T, Olson MOJ (2000) The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol 150:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundr M, Hoffmann-Rohrer U, Hu QY, Grummt I, Rothblum LI, Phair RD, Misteli T (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626

    Article  CAS  PubMed  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Penman S (1971) Regulation of synthesis and processing of nucleolar components in metaphase-arrested cells. J Mol Biol 59:27–42

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK (1991) Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funaki K, Katsumoto T, Iino A (1995) Immunocytochemical localization of actin in the nucleolus of rat oocytes. Biol Cell 84:139–146

    Article  CAS  PubMed  Google Scholar 

  • Gautier T, Robert-Nicoud M, Guilly MN, Hernandez-Verdun D (1992) Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J Cell Sci 102 (Pt 4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Hadjiolov A (1985) The nucleolus and ribosome biogenesis. Springer, New York

    Book  Google Scholar 

  • Hernandez-Verdun D (2004) Behavior of the nucleolus during mitosis. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 41–57

    Google Scholar 

  • Hiscox JA (2002) The nucleolus—a gateway to viral infection? Arch Virol 147:1077–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S (2002) Building an efficient factory: where is pre-rRNA synthesized in the nucleolus? J Cell Biol 157:739-741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12:1151–1164

    Article  CAS  PubMed  Google Scholar 

  • Johnson AW, Lund E, Dahlberg J (2002) Nuclear export of ribosomal subunits. Trends Biochem Sci 27:580–585

    Article  CAS  PubMed  Google Scholar 

  • Kjems J, Askjaer P (2000) Rev protein and its cellular partners. Adv Pharmacol 48:251–298

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Copeland TD, Pomerantz RJ (1999) Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene 18:1503–1514

    Article  CAS  PubMed  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465-475

    Article  CAS  PubMed  Google Scholar 

  • Leger-Silvestre I, Noaillac-Depeyre J, Faubladier M, Gas N (1997) Structural and functional analysis of the nucleolus of the fission yeast Schizosaccharomyces pombe. Eur J Cell Biol 72:13–23

    CAS  PubMed  Google Scholar 

  • Leung AK, Lamond AI (2003) The dynamics of the nucleolus. Crit Rev Eukaryot Gene Expr 13:39–54

    Article  CAS  PubMed  Google Scholar 

  • Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI (2004) Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin E, Lin SW, Lin A (2001) The participation of 5S rRNA in the co-translational formation of a eukaryotic 5S ribonucleoprotein complex. Nucleic Acids Res 29:2510–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SJ, Cai ZW, Liu YJ, Dong MY, Sun LQ, Hu GF, Wei YY, Lao WD (2004) Role of nucleostemin in growth regulation of gastric cancer, liver cancer and other malignancies. World J Gastroenterol 10:1246–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989) Functional dissection of the HIV-1 Rev trans-activator—derivation of a trans-dominant repressor of Rev function. Cell 58:205–214

    Article  CAS  PubMed  Google Scholar 

  • Melese T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  CAS  PubMed  Google Scholar 

  • Michienzi A, Cagnon L, Bahner I, Rossi JJ (2000) Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. P Natl Acad Sci USA 97:8955–8960

    Article  CAS  Google Scholar 

  • Michienzi A, Li S, Zaia JA, Rossi JJ (2002) A nucleolar TAR decoy inhibitor of HIV-1 replication. P Natl Acad Sci USA 99:14047–14052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milkereit P, Gadal O, Podtelejnikov A, Trumtel S, Gas N, Petfalski E, Tollervey D, Mann M, Hurt E, Tschochner H (2001) Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell 105:499–509

    Article  CAS  PubMed  Google Scholar 

  • Milkereit P, Strauss D, Bassler J, Gadal O, Kuhn H, Schutz S, Gas N, Lechner J, Hurt E, Tschochner H (2003) A noc complex specifically involved in the formation and nuclear export of ribosomal 40S subunits. J Biol Chem 278:4072–4081

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2001) Nuclear structure-protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  CAS  PubMed  Google Scholar 

  • Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 10–20

    Google Scholar 

  • Mougey EB, O’Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M (2004) NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 15(12):5712–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson MOJ (2004a) Nontraditional roles of the nucleolus. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 329–342

    Google Scholar 

  • Olson MOJ (2004b) Introduction. In: Olson MOJ (ed) The nucleolus. Landes Bioscience, Georgetown, pp 1–9

    Google Scholar 

  • Olson MOJ (2004c) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004: e10

    Article  Google Scholar 

  • Olson MOJ, Hingorani K, Szebeni A (2002) Conventional and nonconventional roles of the nucleolus. Int Rev Cytol 219:199–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omer AD, Ziesche S, Ebhardt H, Dennis PP (2002) In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. P Natl Acad Sci USA 99:5289–5294

    Article  CAS  Google Scholar 

  • Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, De Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290:337–341

    Article  CAS  PubMed  Google Scholar 

  • Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P, Sentenac A, Carles C Riva M (2000) The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 19:5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604–605

    Article  CAS  PubMed  Google Scholar 

  • Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  • Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann W, de Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nature Cell Biol 6(12):1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Politz JC, Lewandowski LB, Pederson T (2002) Signal recognition particle RNA localization within the nucleolus differs from the classical sites of ribosome synthesis. J Cell Biol 159: 411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Politz JC, Tuft RA, Pederson T (2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 14:4805–4812

    Article  CAS  PubMed  Google Scholar 

  • Prescott DM, Bender MA (1962) Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp Cell Res 26:260–268

    Article  PubMed  Google Scholar 

  • Raska I (2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol 13:517–525

    Article  CAS  PubMed  Google Scholar 

  • Raska I, Koberna K, Malinsky J, Fidlerova H, Masata M (2004) The nucleolus and transcription of ribosomal genes. Biol Cell 96:579–94

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96:639–655

    Article  CAS  PubMed  Google Scholar 

  • Rodway H, Llanos S, Rowe J, Peters G. (2004) Stability of nucleolar versus non-nucleolar forms of human p14(ARF). Oncogene 23:6186–92

    Article  CAS  PubMed  Google Scholar 

  • Roix J, Misteli T (2002) Genomes, proteomes, and dynamic networks in the cell nucleus. Histochem Cell Biol 118:105–116

    Article  CAS  PubMed  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH (1999) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 2001:332–337

    Google Scholar 

  • Savino TM, Gebrane-Younes J, De Mey J, Sibarita JB, Hernandez-Verdun D (2001) Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 153:1097–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11:385–390

    Article  CAS  PubMed  Google Scholar 

  • Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D, Diaz JJ. (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider DA, Nomura M (2004) RNA polymerase I remains intact without subunit exchange through multiple rounds of transcription in Saccharomyces cerevisiae. P Natl Acad Sci USA 101:15112–15117

    Article  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol

  • Shav-Tal Y, Singer RH, Darzacq X (2004) Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 5:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW (2000) Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol 151:653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steitz JA, Berg C, Hendrick JP, La Branch, Metspalu A, Rinke J, Yario T (1988) A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J Cell Biol 106:545–556

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Levine AJ (1999) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. P Natl Acad Sci USA 96:6937–6941

    Article  CAS  Google Scholar 

  • Thiry M, Goessens G (1996) The nucleolus during the cell cycle. R.G. Landes, Austin

    Google Scholar 

  • Thiry M, Cheutin T, O’Donohue MF, Kaplan H, Ploton D (2000) Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA 6:1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotta CR, Lund E, Kahan L, Johnson AW, Dahlberg JE (2003) Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J 22:2841–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai RYL, McKay RDG (2002) A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Gene Dev 16:2991–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschochner H, Hurt E (2003) Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 13:255–263

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ (2000) Cooperative signals governing ARF-Mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20:2517–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiong Y (1999) Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3:579–591

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Xiong Y (2001) Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differentiation 12:175–186

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23:8902-8912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolotukhin AS, Felber BK (1999) Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol 73:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the helpful discussions with Dr. P. DiMario, Dr. J. Gall, Dr. P. Hozak, Dr. S. Huang, and Dr. P. de Lanerolle, and critical reading of the manuscript by Dr. T. Misteli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. J. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, M.O.J., Dundr, M. The moving parts of the nucleolus. Histochem Cell Biol 123, 203–216 (2005). https://doi.org/10.1007/s00418-005-0754-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0754-9

Keywords

Navigation