Skip to main content

The Variation of Base Composition in Plant Genomes

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

The proportions of the four nucleotides in DNA may vary significantly in various genome components and with different selective forces or mutation biases acting on particular sequences. Most frequently, DNA base composition is expressed as the percentage of guanine (G) and cytosine (C) bases (i.e., GC content). The study of GC content has a long tradition in prokaryotic biology and systematics, and has been widely discussed in animal genomics namely, in the consequences of the evolution of the isochore structure of humans and other warm-blooded vertebrates. However, less attention has been paid to the GC content of plant genomes. Here, we survey existing research concerning GC content of plant nuclear genomes and outline some directions for possible interpretations of the biological relevance of variation in GC content viewed in the context of work done on bacterial and animal genomes. We briefly discuss major physical and chemical differences between GC and AT base pair and summarize existing opinions on the mechanisms of local or genome-wide GC content variation, including namely compositional variation, neutral mutational biases, and various selective reasons. In addition to the brief survey of plant genomic GC contents, most frequent methods for GC content measurements in plants are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relatively small increase in genome size may be due to the combined effect of genome downsizing and the massive proliferation of GC-rich retrotransposons.

References

  • Aird D, Chen WS, Ross M, Connolly K, Meldrim J, Russ C, Fisher S, Jaffe D, Nusbaum C, Gnirke A (2010) Analyzing and minimazing bias in Illumina sequencing libraries. Genome Biol 11(Suppl 1):P3

    Article  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, Chao SM et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov BV, Freidin S, Troukhan M, Tatarinova T, Zhang H, Swaller T, Lu Y, Bouck J, Flavell R et al (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194

    Article  PubMed  CAS  Google Scholar 

  • Anselmi C, Bocchinfuso G, De Santis P, Savino M, Scipioni A (1999) Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J Mol Biol 286:1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bai L, Morozov AV (2010) Gene regulation by nucleosome positioning. Trends Genet 26:476–483

    Article  PubMed  CAS  Google Scholar 

  • Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7

    Article  PubMed  CAS  Google Scholar 

  • Barton LL (2005) Physiological basis for the growth in extreme environments. In: Barton L (ed) Structural and functional relationships in prokaryotes. Springer, Berlin/Heidelberg/New York, pp 348–393

    Google Scholar 

  • Basak S, Mukhopadhyay P, Gupta SK, Ghosh TC (2010) Genomic adaptation of prokaryotic organisms at high temperature. Bioinformation 4:352–356

    Article  PubMed  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106(Suppl):177–200

    Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparison of Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be (157 Mb) and thus 25% larger than the Arabidopsis Genome Initiative estimate of 125 Mb. Ann Bot 91:547–557

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2000a) Isochores and the evolutionary dynamics of vertebrates. Gene 241:3–17

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2000b) The compositional evolution of vertebrate genomes. Gene 259:31–43

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2007) The neoselectionist theory of genome evolution. Proc Natl Acad Sci U S A 104:8385–8390

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    Article  PubMed  CAS  Google Scholar 

  • Bettecken T, Trifonov EN (2009) Repertoires of the nucleosome-positioning dinucleotides. PLoS One 4:e7654

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Biro JC (2008) Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases. Theor Biol Med Model 5:14

    Article  PubMed  CAS  Google Scholar 

  • Brown TC, Jiricny J (1988) Different base/base mispairs are corrected with different efficiencies and specifities in monkey kidney-cells. Cell 54:705–711

    Article  PubMed  CAS  Google Scholar 

  • Bucciarelli G, Di Filippo M, Costagliola D, Alvarez-Valin F, Bernardi G, Bernardi G (2009) Environmental genomics: a tale of two fishes. Mol Biol Evol 26:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  CAS  Google Scholar 

  • Bureš P, Šmarda P, Hralová I, Fuentes-Soriano S, Lysák M, Řepka R, Helánová K, Rotreklová O, Procházková J, Úradníček L (2007) Correlation between GC content and genome size in plants. Cytometry 71A:764

    Google Scholar 

  • Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154:1819–1825

    PubMed  CAS  Google Scholar 

  • Carels N, Hatey P, Jabbari K, Bernardi G (1998) Compositional properties of homologous coding sequences from plants. J Mol Evol 46:45–53

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37(Database issue):D93–D97

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci U S A 101:3480–3485

    Article  PubMed  CAS  Google Scholar 

  • Cheng YM, Lin BY (2003) Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164:299–310

    PubMed  CAS  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    Article  PubMed  CAS  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed  CAS  Google Scholar 

  • Constantini M, Bernardi G (2008a) The short-sequence designs of isochores from the human genome. Proc Natl Acad Sci U S A 105:13971–13976

    Article  Google Scholar 

  • Constantini M, Bernardi G (2008b) Replication timing, chromosomal bands, and isochores. Proc Natl Acad Sci U S A 105:3433–3437

    Article  Google Scholar 

  • Constantini M, Cammarano R, Bernardi G (2009) The evolution of isochore patterns in vertebrate genomes. BMC Genomics 10:146

    Article  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  PubMed  CAS  Google Scholar 

  • Crane CF (2007) Patterned sequence in the transcriptome of vascular plants. BMC Genomics 8:173

    Article  PubMed  CAS  Google Scholar 

  • Cruveiller S, Jabbari K, D’Onofrio G, Bernardi G (1999) Different hydrophobicities of orthologous proteins from Xenopus and human. Gene 238:15–21

    Article  PubMed  CAS  Google Scholar 

  • D’Onofrio G, Jabbari K, Bernardi G, Musto H (1999) The correlation of protein hydropathy with the base composition of coding sequences. Gene 238:3–14

    Article  PubMed  Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • De Rose-Wilson LJ, Gaut BS (2007) Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata. BMC Evol Biol 7:66

    Article  CAS  Google Scholar 

  • Doktycz MJ (2002) Nucleic acids: thermal stability and denaturation. In: Encyclopedia of life sciences. Wiley. Wiley Online Library http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0003123

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and the estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry 77A:635–642

    Article  CAS  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Bérard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B et al (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitution in the human genome. PLoS Genet 4:e1000071

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci U S A 107:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Elhaik E, Landan G, Graur D (2009) Can GC content at third-codon positions be used as a proxy for isochore composition? Mol Biol Evol 26:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1993) Recombination and mammalian genome evolution. Proc R Soc Lond B Biol Sci 252:237–243

    Article  CAS  Google Scholar 

  • Eyre-Walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:549–555

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat, a possible mechanism for differentiation of homeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X et al (2002) Sequence and analysis of the rice chromosome 4. Nature 420:316–320

    Article  PubMed  CAS  Google Scholar 

  • Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V (2010) Quantification of cellular deoxynucleoside triphosphates. Nucleic Acids Res 38:e85

    Article  PubMed  CAS  Google Scholar 

  • Flagel L, Blackman B (2012) The first ten years of plant genome sequencing and prospects for the next decades. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:65–77

    Article  PubMed  CAS  Google Scholar 

  • Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination—determination of rate constants and the activation energy. Biochemistry 29:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Fullerton SM, Carvalho AB, Clark AG (2001) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Lobry JR (1997) Relationships between genomic G + C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636

    Article  PubMed  CAS  Google Scholar 

  • Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626

    Article  PubMed  CAS  Google Scholar 

  • Göndör A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature 461:212–217

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS, Dickerson RE (1994) Bending and curvature calculations in B-DNA. Nucleic Acids Res 22:5497–5503

    Article  PubMed  CAS  Google Scholar 

  • Green P, Ewing B, Mille W, Thomas PJ, NISC Comparative Sequencing Program, Green ED (2003) Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 33:514–517

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum BD, Levine AJ, Bhanot G, Rabadan R (2009) Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 4:e1000079

    Article  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 67–101

    Google Scholar 

  • Gu W, Zhou T, Wilke C (2010) A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6:e1000664

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Worm J, Grønbæk K (2002) Profiling DNA methylation by melting analysis. Methods 27:121–127

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Bao J, Fan L (2007) Evidence of selectively driven codon usage in rice: implications for GC content evolution of Gramineae genes. FEBS Lett 581:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Herzel H, Weiss O, Trifonov EN (1999) 10-11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics 15:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188

    Article  PubMed  CAS  Google Scholar 

  • Hirsch C, Jiang J (2012) Centromeres: sequence, structure, and biology. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based size of centromeric regions of Arabidopsis thaliana chromosome 1, 2, and 3. DNA Res 9:117–121

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis among prokaryotes. Proc R Soc Lond B Biol Sci 268:493–497

    Article  CAS  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    Article  PubMed  CAS  Google Scholar 

  • Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol 55:496–501

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333:143–149

    Article  PubMed  CAS  Google Scholar 

  • Jabbari K, Cruveiller S, Clay O, Bernardi G (2003) The correlation between GC3 and hydropathy in human genes. Gene 317:137–140

    Article  PubMed  CAS  Google Scholar 

  • Jaillon CO, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Janousek B, Hobza R, Vyskot B (2012) Chromosomes and sex differentiation. In: Leitch IJ, Dolezel J, Greilhuber J (eds) Plant genome diversity, vol 2, Physical structure and evolution of plant genomes. Springer, Wien/New York

    Google Scholar 

  • Jansson S, Meyer-Gauen G, Cerff R, Martin W (1994) Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39:34–46

    Article  PubMed  Google Scholar 

  • Jaramillo-Correa JP, Verdú M, González-Martínez SC (2010) The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 10:22

    Article  PubMed  CAS  Google Scholar 

  • Jeffares DC, Penkett CJ, Bähler J (2008) Rapidly regulated genes are introns poor. Trends Genet 24:375–378

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A (2010) Phylogeny of methylomes. Science 328:837–838

    Article  PubMed  CAS  Google Scholar 

  • Jia Q, Wu HT, Zhou XJ, Gao J, Zhao W, Aziz JD, Wei JS, Hou LH, Wu SY, Zhang Y et al (2010) A “GC-rich” method for mammalian gene expression: a dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci China Life Sci 53:94–100

    Article  PubMed  CAS  Google Scholar 

  • Kawakami T, Strakosh SC, Zhen Y, Ungerer MC (2010) Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity 104:341–350

    Article  PubMed  CAS  Google Scholar 

  • Kejnovsky E, Hawkins J, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Kejnovský E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541

    Article  PubMed  CAS  Google Scholar 

  • King GJ, Ingrouille MJ (1987) Genome heterogenity and classification of the Poaceae. New Phytol 107:633–644

    Article  Google Scholar 

  • Kiyama R, Trifonov EN (2002) What positions nucleosomes?—a model. FEBS Lett 523:7–11

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol 2:research0010.1–0010.13

    Article  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    Article  PubMed  CAS  Google Scholar 

  • Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ (2009) Amplification free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes. Nat Methods 6:291–295

    Article  PubMed  CAS  Google Scholar 

  • Kubát Z, Hobza R, Vyskot B, Kejnovský E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350–356

    Article  PubMed  CAS  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M et al (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 16:114–125

    Article  PubMed  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Lattorff HMG, Moritz RFA (2008) Recombination rate and AT-content show opposite correlations in mammalian and other animal genomes. J Evol Biol 35:146–149

    Article  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417

    Article  PubMed  CAS  Google Scholar 

  • Leeds JM, Slabaugh MB, Mathews CK (1985) DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol Cell Biol 5:3443–3450

    PubMed  CAS  Google Scholar 

  • Leitch IJ (2012) Genome size diversity and evolution in land plants. In: Leitch IJ, Dolezel J, Greilhuber J (eds) Plant genome diversity, vol 2, Physical structure and evolution of plant genomes. Springer, Wien/New York

    Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CMR, D’Hont A, Garsmeur O et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hsia AP, Schnable PS (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10:131–135

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Ouyang S, Egan A, Nobuta K, Haas BJ, Zhu W, Gu X, Silva JC, Meyers BC, Buell RC (2008) Characterization of paralogous protein families in rice. BMC Plant Biol 8:18

    Article  PubMed  CAS  Google Scholar 

  • Lind P, Andersson DI (2008) Whole genome mutational bias in bacteria. Proc Natl Acad Sci U S A 105:17878–17883

    Article  PubMed  CAS  Google Scholar 

  • Linder PH, Rudall PJ (2005) Evolutionary history of Poales. Annu Rev Ecol Evol Syst 36:107–124

    Article  Google Scholar 

  • Lister R, O’Malley RG, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  • Liu QP, Xue QZ (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84:55–62

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    Article  PubMed  CAS  Google Scholar 

  • Liu H, He R, Zhang H, Huang Y, Tian M, Zhang J (2010) Analysis of synonymous codon usage in Zea mays. Mol Biol Rep 37:677–684

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W et al (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    Article  PubMed  CAS  Google Scholar 

  • Lysak M, Schubert I (2012) Mechanisms of chromosome rearrangements. In: Leitch IJ, Dolezel J, Greilhuber J (eds) Plant genome diversity, vol 2, Physical structure and evolution of plant genomes. Springer, Wien/New York

    Google Scholar 

  • Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291

    Article  PubMed  CAS  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  CAS  Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  • Mann S, Phoebe-Chen YP (2010) Bacterial genomic G + C composition-eliciting environmental adaptation. Genomics 95:7–15

    Article  PubMed  CAS  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  PubMed  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • Martomo SA, Mathews CK (2002) Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro. Mutat Res-Fund Mol M 499:197–211

    Article  CAS  Google Scholar 

  • Matassi G, Montero LM, Salinas J, Bernardi G (1989) The isochore organization and compositional distribution of homologous coding sequences in the nuclear genomes of plants. Nucleic Acids Res 17:5273–5290

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 177–215

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990

    Article  PubMed  CAS  Google Scholar 

  • Meuth M (1989) The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp Cell Res 181:305–316

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  PubMed  CAS  Google Scholar 

  • Michaels ML, Miller JH (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174:6321–6325

    PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–997

    Article  PubMed  CAS  Google Scholar 

  • Moshonov S, Elfakess R, Golan-Mashiach M, Sinvani H, Dikstein R (2008) Links between core promoter and basic gene features influence gene expression. BMC Genomics 9:92

    Article  PubMed  CAS  Google Scholar 

  • Mrazek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci U S A 95:3720–3725

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay P, Basak S, Ghosh TC (2007) Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes. Gene 400:71–81

    Article  PubMed  CAS  Google Scholar 

  • Musto H, Naya H, Zavala A, Romero H, Alvarez-Valín F, Bernardi G (2004) Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 573:73–77

    Article  PubMed  CAS  Google Scholar 

  • Musto H, Naya H, Zavala A, Romero H, Alvarez-Valín F, Bernardi G (2006) Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 347:1–3

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160 -kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  PubMed  CAS  Google Scholar 

  • Naya H, Romero H, Zavala A, Alvarez B, Musto H (2002) Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol 55:260–264

    Article  PubMed  CAS  Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K et al (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Nakajima R, Ohtsubo H, Ohtsubo E (1997) RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst 72:131–140

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al (2008) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidisation in the wheat (Aegilops-Triticum) group. J Hered 94:260–264

    Article  PubMed  CAS  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA et al (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer GP (2006) Mutagenesis at methylated CpG sequences. In: Doerfler W, Böhm P (eds) DNA methylation: basic mechanisms, vol 301, Current topics in microbiology and immunology. Springer, Berlin/Heidelberg/New York, pp 259–281

    Chapter  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansion in Oryza australensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Pozzoli U, Menozzi G, Fumagalli M, Cereda M, Comi GP, Cagliani R, Bresolin N, Sironi M (2008) Both selective and neutral processes drive GC content evolution in the human genome. BMC Evol Biol 8:99

    Article  PubMed  CAS  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Puertas MJ (2002) Nature and evolution of B chromosomes in plants: a non-coding but information-rich part of plant genomes. Cytogenet Genome Res 96:198–205

    Article  PubMed  CAS  Google Scholar 

  • Richards C, Verhoeven KJF, Bossdorf O (2012) Evolutionary significance of epigenentic variation. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Robinson JP, Grégori G (2007) Principles of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 19–40

    Google Scholar 

  • Rocha EPC (2004) The replication-related organization of the bacterial chromosome. Microbiology 150:1609–1627

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC, Danchin A (2002) Competition for scarce resources might bias bacterial genome composition. Trends Genet 18:291–294

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC, Touchon M, Feil EJ (2006) Similar compositional biases are caused by very different mutational effects. Genome Res 16:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Romiguier J, Ranwez V, Douzery EJP, Galtier N (2010) Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res 20:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res 16:4269–4285

    Article  PubMed  CAS  Google Scholar 

  • Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Vitte C (2009) The LTR-retrotransposons of maize. In: Bennetzen J, Hake S (eds) Handbook of maize genetics and genomics. Springer, New York, pp 307–327

    Google Scholar 

  • SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Satapathy SS, Dutta M, Ray SK (2010) Variable correlation of genome GC% with transfer RNA number as well as with transfer RNA diversity among bacterial groups: a-Proteobacteria and Tenericutes exhibit strong positive correlation. Microbiol Res 165:232–242

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MN, Trautner TA, Kornberg A (1962) Enzymatic synthesis of deoxyribonucleic acid: XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem 237:1961–1967

    Google Scholar 

  • Seffens W, Digby D (1999) mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res 27:1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L, Thåström AC, Field Y, Moore IK, Wang JPZ, Widom J (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  PubMed  CAS  Google Scholar 

  • Serenkov GP (1962) Nucleic acids in the evolution of algae [in Russiian]. Izv Akad Nauk SSSR Biol 1962:857–868

    Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Shantz HL (1954) The place of grasslands in the Earths cover of vegetation. Ecology 35:143–145

    Article  Google Scholar 

  • Shapiro HS (1976) Distribution of purines and pyrimidines in deoxyribonucleic acids. In: Fasman GD (ed) Handbook of biochemistry and molecular biology, 3rd edn. CRC Press, Cleveland, pp 241–281

    Google Scholar 

  • Shi XL, Wang XY, Li Z, Zhu Q, Yang J, Ge S, Luo J (2007) Evidence that natural selection is the primary cause of the guanine-cytosine content variation in rice genes. J Integr Plant Biol 49:1393–1399

    Article  CAS  Google Scholar 

  • Siomos M, Riha K (2012) Telomeres and their biology. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Sloan DB, Taylor DR (2010) Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J Mol Evol 70:479–491

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Bureš P, Horová L (2010) The evolution of base composition in monocots. In: Proceedings of the international workshop on structural and functional diversity of the eukaryotic genome, Brno. Muni Press, Brno, p 69

    Google Scholar 

  • Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Bureš P, Šmerda J, Horová L (2012) Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytol 193:513–521

    Google Scholar 

  • Smith DR (2009) Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol 71:627–639

    Article  PubMed  CAS  Google Scholar 

  • Stalder L, Mühlemann O (2008) The meaning of nonsense. Trends Cell Biol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • Sterpone F, Bertonati C, Briganti G, Melchionna S (2010) Water around thermophilic proteins: the role of charged and apolar atoms. J Phys Condens Matter 22:284113

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup JQ (2002) Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 3:21–29

    Article  PubMed  CAS  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  PubMed  CAS  Google Scholar 

  • Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11:308

    Article  PubMed  CAS  Google Scholar 

  • Tillo D, Hughes TR (2009) G plus C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10:442

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2004) Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN, Sussman JL (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A 77:3816–3820

    Article  PubMed  CAS  Google Scholar 

  • Trivedi S, Rao SR, Gehlot HS (2005) Nucleic acid stability in thermophilic prokaryotes: a review. J Cell Mol Biol 4:61–69

    Google Scholar 

  • Troukhan M, Tatarinova T, Bouck J, Flawell R, Alexandrov N (2009) Genome-wide discovery of cis-elements in promoter sequences using gene expression data. OMICS 13:139–151

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin B (2006) DNA methylation in plants. In: Doerfler W, Böhm P (eds) DNA methylation: basic mechanisms, vol 2. Springer, Berlin/Heidelberg/New York, pp 67–122

    Chapter  Google Scholar 

  • Varriale A, Torelli G, Bernardi G (2008) Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA 14:1492–1500

    Article  PubMed  CAS  Google Scholar 

  • Veselý P, Bureš P, Šmarda P, Pavlíček T (2012) Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann Bot 109:65–75

    Google Scholar 

  • Vetsigian K, Goldenfeld N (2009) Genome rhetoric and the emergence of compositional bias. Proc Natl Acad Sci U S A 106:215–220

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2001) Within-intron correlation with base composition of adjacent exons in different genomes. Gene 276:143–151

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2003) DNA helix: the importance of being GC-rich. Nucleic Acids Res 31:1838–1844

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2004) Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet 20:248–253

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2005) Noncoding DNA, isochores and gene expression: nucleosome formation potential. Nucleic Acids Res 33:559–563

    Article  PubMed  CAS  Google Scholar 

  • Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584:3752–3759

    Article  PubMed  CAS  Google Scholar 

  • Wolf P (2012) Plastid genome diversity. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  PubMed  CAS  Google Scholar 

  • Wong GKS, Wang J, Tao L, Tan J, Zhang JG, Passey DA, Yu J (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856

    Article  PubMed  CAS  Google Scholar 

  • Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34:564–574

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Kikuchi S, Neumann P, Zhang W, Wu Y, Chen F, Jiang J (2010) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J 63:353–365

    Article  CAS  Google Scholar 

  • Yang C, Bolotin E, Jiang T, Sladek FM, Martinez M (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389:52–65

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492

    Article  PubMed  CAS  Google Scholar 

  • Zhang X (2012) Chromatin modifications. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Zhang R, Zhang CT (2004) Isochore structures in the genome of the plant Arabidopsis thaliana. J Mol Evol 59:227–238

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kosakovsky Pond S, Gaut BS (2001) A survey of the molecular evolutionary dynamics of twenty-five multigene families from four grass taxa. J Mol Evol 52:144–156

    PubMed  CAS  Google Scholar 

  • Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution of optimal exon and intron discrimination. Proc Natl Acad Sci U S A 105:5797–5802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of authors was supported by the Czech Ministry of Education, Youth and Sports (grants MSM 0021622416 and LC06073) and the Czech Science Foundation (grants GACR206/08/P222 and GACR506/11/0890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Šmarda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Šmarda, P., Bureš, P. (2012). The Variation of Base Composition in Plant Genomes. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_14

Download citation

Publish with us

Policies and ethics