Skip to main content
Log in

Unparalleled GC content in the plastid DNA of Selaginella

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

One of the more conspicuous features of plastid DNA (ptDNA) is its low guanine and cytosine (GC) content. As of February 2009, all completely-sequenced plastid genomes have a GC content below 43% except for the ptDNA of the lycophyte Selaginella uncinata, which is 55% GC. The forces driving the S. uncinata ptDNA towards G and C are undetermined, and it is unknown if other Selaginella species have GC-biased plastid genomes. This study presents the complete ptDNA sequence of Selaginella moellendorffii and compares it with the previously reported S. uncinata plastid genome. Partial ptDNA sequences from 103 different Selaginella species are also described as well as a significant proportion of the S. moellendorffii mitochondrial genome. Moreover, S. moellendorffii express sequence tags are data-mined to estimate levels of plastid and mitochondrial RNA editing. Overall, these data are used to show that: (1) there is a genus-wide GC bias in Selaginella ptDNA, which is most pronounced in South American articulate species; (2) within the Lycopsida class (and among plants in general), GC-biased ptDNA is restricted to the Selaginella genus; (3) the cause of this GC bias is arguably a combination of reduced AT-mutation pressure relative to other plastid genomes and a large number of C-to-U RNA editing sites; and (4) the mitochondrial DNA (mtDNA) of S. moellendorffii is also GC biased (even more so than the ptDNA) and is arguably the most GC-rich organelle genome observed to date—the high GC content of the mtDNA also appears to be influenced by RNA editing. Ultimately, these findings provide convincing support for the earlier proposed theory that the GC content of land-plant organelle DNA is positively correlated and directly connected to levels of organelle RNA editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banks JA (2009) Selaginella and 400 million years of separation. Annu Rev Plant Biol 60:223–238

    Article  CAS  PubMed  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268

    Article  CAS  PubMed  Google Scholar 

  • Dybvig K, Voelker LL (1996) Molecular biology of mycoplasmas. Ann Rev Microbiol 50:25–57

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Eyre-Walker A (1998) Problems with parsimony in sequences of biased base composition. J Mol Evol 47:686–690

    Article  CAS  PubMed  Google Scholar 

  • Freyer R, Kiefer-Meyer MC, Kössel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci 94:6285–6290

    Article  CAS  PubMed  Google Scholar 

  • Glover KE, Spencer DF, Gray MW (2001) Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 276:639–648

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–107

    Article  CAS  PubMed  Google Scholar 

  • Jobson RW, Qiu YL (2008) Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct 3:43

    Article  PubMed  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  CAS  PubMed  Google Scholar 

  • Korall P, Kenrick P (2002) Phylogenetic relationships in Selaginellaceae based on rbcL sequences. Am J Bot 89:506–517

    Article  Google Scholar 

  • Korall P, Kenrick P (2004) The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity. Mol Phylogenet Evol 31:852–864

    Article  CAS  PubMed  Google Scholar 

  • Korall P, Kenrick P, Therrien JP (1999) Phylogeny of Selaginellaceae: evaluation of generic/subgeneric relationships based on rbcL gene sequences. Int J Plant Sci 160:585–594

    Article  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Kusumi J, Tachida H (2005) Compositional properties of green-plant plastid genomes. J Mol Evol 60:417–425

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons B, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730

    Article  CAS  PubMed  Google Scholar 

  • Mabberley DJ (1997) The plant-book: a portable dictionary of the vascular plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411

    CAS  PubMed  Google Scholar 

  • Mallet M, Lee RW (2006) Identification of three distinct Polytmella lineages based on mitochondrial DNA features. J Eukaryot Microbiol 53:79–84

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Sugita M (2004) Tissue- and stage-specific RNA editing of rps14 transcripts in moss (Physcomitrella patens) chloroplasts. J Plant Physiol 161:113–115

    Article  CAS  PubMed  Google Scholar 

  • Modern CW, Wofe K, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. EMBO J 10:3281–3288

    Google Scholar 

  • Morton BR (1993) Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J Mol Evol 37:273–280

    Article  CAS  PubMed  Google Scholar 

  • Morton BR (1998) Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J Mol Evol 46:449–459

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Audic S, Renesto-Audiffren P et al (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:2093–2098

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833

    Article  CAS  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  CAS  PubMed  Google Scholar 

  • Richly E, Leister D (2004) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21:1972–1980

    Article  CAS  PubMed  Google Scholar 

  • Rüdinger M, Funk HT, Rensing SA, Maier UG, Knoop V (2009) RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics 281:473–481

    Article  PubMed  Google Scholar 

  • Smith DR, Lee RW (2008a) Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Mol Biol Evol 25:487–496

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Lee RW (2008b) Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: investigating the origins of genome architecture. BMC Evol Biol 8:156

    Article  PubMed  Google Scholar 

  • Smith DR, Lee RW (2009) The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA. BMC Genomics 10:132

    Article  PubMed  Google Scholar 

  • Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Vlahovicek K (2004) INCA: synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics 20:2329–2330

    Article  CAS  PubMed  Google Scholar 

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (2007) The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transposition and many gene losses. J Plant Res 120:281–290

    Article  CAS  PubMed  Google Scholar 

  • Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL (2005) The first complete chloroplast genome sequence of a lycophyte Huperzia lucidula (Lycopodiaceae). Gene 350:117–128

    Article  CAS  PubMed  Google Scholar 

  • Wolfe PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:87–89

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Robert W. Lee for insightful comments and to Jo Ann Banks for giving me permission to use the S. moellendorffii nuclear genome project trace file data. This work was supported by a grant to R.W.L. from the Natural Sciences and Engineering Research Council (NSERC) of Canada. D.R.S. is an Izaak Walton Killam Memorial Scholar and holds a Canada Graduate Scholarship from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Roy Smith.

Additional information

Accession numbers

The GenBank accession numbers of the S. moellendorffii organelle genome sequences described in this study are FJ755183 (ptDNA) and GQ246802-GQ246808 (mtDNA).

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF 504 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.R. Unparalleled GC content in the plastid DNA of Selaginella . Plant Mol Biol 71, 627–639 (2009). https://doi.org/10.1007/s11103-009-9545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9545-3

Keywords

Navigation