Skip to main content
Log in

A “GC-rich” method for mammalian gene expression: A dominant role of non-coding DNA GC content in regulation of mammalian gene expression

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein. The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment (including intron) of extremely GC-rich at the 5′ or/and 3′ flanking regions of these protein genes or their gene promoters. This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super “chromatin opening element” and plays an important role in mammalian gene expression. This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure, namely DNA GC-content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cyranoski D. Giant bird-like dinosaur found: Chinese researchers unearth a surpising find. Nature. Published online 13 June 2007.

  2. Fucheng Z H, Zhonhe Z H, Xing X, et al. A bizarre Jurrassic maniraptoran from China with elongate ribbon-like feathers. Nature, 2008, 455: 1105–1108, 10.1038/nature07447

    Article  Google Scholar 

  3. Kost T A, Theodorakis N, Hughes S H. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res, 1983, 11: 8287–8301, 10.1093/nar/11.23.8287, 1:CAS:528:DyaL2cXpslGgtQ%3D%3D, 6324080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernardi G. Isochores and the evolutionary genomics of vertebrates. Gene, 2000, 241: 3–17, 10.1016/S0378-1119(99)00485-0, 1:CAS:528:DyaK1MXotVGksrw%3D, 10607893

    Article  CAS  PubMed  Google Scholar 

  5. Vinogradov A E. DNA helix: the importance of being GC-rich. Nucleic Acids Res, 2003, 31: 1838–1844, 10.1093/nar/gkg296, 1:CAS:528:DC%2BD3sXisFequrs%3D, 12654999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao H, Widlund H R, Simonsson T, et al. TGGA repeats impair nucleosome formation. J Mol Biol, 1998, 281: 253–260, 10.1006/jmbi.1998.1925, 1:CAS:528:DyaK1cXlsFSqsr8%3D, 9698546

    Article  CAS  PubMed  Google Scholar 

  7. Lowary P T & Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol, 1998, 276: 19–42, 10.1006/jmbi.1997.1494, 1:CAS:528:DyaK1cXhs1yju7Y%3D, 9514715

    Article  CAS  PubMed  Google Scholar 

  8. Levitsky V G. RECON: A program for prediction of nucleosome formation potential. Nucleic Acids Res, 2004, 32: 346–349, 10.1093/nar/gkh482

    Article  Google Scholar 

  9. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol, 1987, 196: 261–282, 10.1016/0022-2836(87)90689-9, 1:CAS:528:DyaL2sXlt1ygsrc%3D, 3656447

    Article  CAS  PubMed  Google Scholar 

  10. Fregien N, Davidson N. Activating elements in the promoter region of the chicken beta-actin gene. Gene, 1986, 48: 1–11, 10.1016/0378-1119(86)90346-X, 1:CAS:528:DyaL2sXhtlaltrs%3D, 3470237

    Article  CAS  PubMed  Google Scholar 

  11. Anderson D C, Krummen L. Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol. 13: 117–123

  12. Jia Q, Li H C, Hui M, et al. A Bioreactor system based on a novel oxygen transfer method. Bioprocess Int, 2008, 6: 66–78, 1:CAS:528:DC%2BD1cXovFSgtLc%3D

    CAS  Google Scholar 

  13. Alexander M, Tarjei S M, Hongcang G, et al. Lander Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454: 766–770

    Google Scholar 

  14. Saxonov S, Berg P, Brutlag D L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA, 2006, 103: 1412–1417, 10.1073/pnas.0510310103, 1:CAS:528:DC%2BD28Xhs1Gnsrs%3D, 16432200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA, 2002, 99: 3740–3745, 10.1073/pnas.052410099, 1:CAS:528:DC%2BD38Xis1KltrY%3D, 11891299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Jia, Wei Chen or Matthew (Mizhou) Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Q., Wu, H., Zhou, X. et al. A “GC-rich” method for mammalian gene expression: A dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci. China Life Sci. 53, 94–100 (2010). https://doi.org/10.1007/s11427-010-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0003-x

Keywords

Navigation