Skip to main content

Heavy metals, behavior, and neurodegeneration: using Caenorhabditis elegans to untangle a can of worms

  • Chapter
  • First Online:
Metal Ions in Neurological Systems
  • 979 Accesses

Abstract

The complexity of the vertebrate brain has made the study of neurodegenerative disease processes slow, difficult, and expensive. Caenorhabditis elegans offers viable in vivo model system for addressing numerous issues pertinent to neurodegenerative diseases. Differentiation and migration patterns in the nematode are well characterized, thus allowing for analysis of changes in nervous system in response to mutations and toxic insults. The full sequencing of the nematode genome and a high-density map of polymorphisms for the wild type nematode allows for mapping of gene mutations and linking of mechanisms of neurodegeneration to genetic susceptibility. In addition to the high level of gene conservation, the processes of synaptic release, trafficking and formation are also conserved between this invertebrate and mammalians. Given these advantages, C. elegans has been employed in numerous studies to address neurodegeneration and mechanisms of toxicity of a wide range of toxicants. In this chapter, we provide an overview on the system model and discuss contemporary insights derived from C. elegans on the involvement of metals in behavior and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

DA:

Dopamine

DAergic:

Dopaminergic

DMT1:

Divalent metal transporter 1

GABA:

γ-aminobutyric acid

GST:

Glutathione-S-transferase

LRRK2:

Leucine-rich repeat kinase 2

MeHg:

Methylmercury

MPT:

Mitochondrial permeability transition

NGM:

Nematode growth medium

Nrf2:

Nuclear factor-2 erythroid 2-related factor-2

PD:

Parkinson’s disease

PHP:

Psuedohyperphosphorylated

PINK1:

PTEN-induced novel kinase 1

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

References

  1. Langston JW (1998) Epidemiology versus genetics in Parkinson’s disease: progress in resolving an age-old debate. Ann Neurol 44:S45–S52

    Article  PubMed  CAS  Google Scholar 

  2. Tyas SL, Manfreda J, Strain LA, Montgomery PR (2001) Risk factors for Alzheimer’s disease: a population-based, longitudinal study in Manitoba, Canada. Int J Epidemiol 30:590–597

    Article  PubMed  CAS  Google Scholar 

  3. Kordas K (2010) Iron, lead, and children’s behavior and cognition. Annu Rev Nutr 30:123–148

    Article  PubMed  CAS  Google Scholar 

  4. Koyashiki GA, Paoliello MM, Tchounwou PB (2010) Lead levels in human milk and children’s health risk: a systematic review. Rev Environ Health 25:243–253

    Article  PubMed  CAS  Google Scholar 

  5. Neal AP, Guilarte TR (2010) Molecular neurobiology of lead (Pb(2+)): effects on synaptic function. Mol Neurobiol 42:151–160

    Article  PubMed  CAS  Google Scholar 

  6. Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Giorgetti B, Balietti M (2008) Brain aging: the zinc connection. Exp Gerontol 43:389–393

    Article  PubMed  CAS  Google Scholar 

  7. Tarohda T, Yamamoto M, Amamo R (2004) Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 380:240–246

    Article  PubMed  CAS  Google Scholar 

  8. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  PubMed  CAS  Google Scholar 

  9. Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S94–S100

    Article  PubMed  CAS  Google Scholar 

  10. Allsop D, Mayes J, Moore S, Masad A, Tabner BJ (2008) Metal-dependent generation of reactive oxygen species from amyloid proteins implicated in neurodegenerative disease. Biochem Soc Trans 36:1293–1298

    Article  PubMed  CAS  Google Scholar 

  11. Ricchelli F, Drago D, Filippi B, Tognon G, Zatta P (2005) Aluminum-triggered structural modifications and aggregation of beta-amyloids. Cell Mol Life Sci 62:1724–1733

    Article  PubMed  CAS  Google Scholar 

  12. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Article  PubMed  CAS  Google Scholar 

  13. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–398

    Article  PubMed  CAS  Google Scholar 

  14. McDonald PW, Jessen T, Field JR, Blakely RD (2006) Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol 26:593–618

    Article  PubMed  CAS  Google Scholar 

  15. Hall DH, Lints R, Altun Z (2006) Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. Int Rev Neurobiol 69:1–35

    Article  PubMed  Google Scholar 

  16. Whittaker AJ, Sternberg PW (2009) Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. BMC Biol 7:33

    Article  PubMed  Google Scholar 

  17. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J Comp Neurol 160:313–337

    Article  PubMed  CAS  Google Scholar 

  18. Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 17:191–201

    Article  PubMed  CAS  Google Scholar 

  19. de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501

    Article  PubMed  CAS  Google Scholar 

  20. Sengupta P, Samuel AD (2009) Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 19:637–643

    Article  PubMed  CAS  Google Scholar 

  21. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet 6

    Google Scholar 

  22. Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 4:38

    Article  PubMed  CAS  Google Scholar 

  23. Bofill R, Orihuela R, Romagosa M, Domenech J, Atrian S, Capdevila M (2009) Caenorhabditis elegans metallothionein isoform specificity–metal binding abilities and the role of histidine in CeMT1 and CeMT2. FEBS J 276:7040–7056

    Article  PubMed  CAS  Google Scholar 

  24. Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  PubMed  CAS  Google Scholar 

  25. Bandyopadhyay J, Song HO, Park BJ, Singaravelu G, Sun JL, Ahnn J, Cho JH (2009) Functional assessment of Nramp-like metal transporters and manganese in Caenorhabditis elegans. Biochem Biophys Res Commun 390:136–141

    Article  PubMed  CAS  Google Scholar 

  26. Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH (2007) Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 8:R122

    Article  PubMed  CAS  Google Scholar 

  27. Kim S, Selote DS, Vatamaniuk OK (2010) The N-terminal extension domain of the C. elegans half-molecule ABC transporter, HMT-1, is required for protein-protein interactions and function. PLoS One 5:e12938

    Article  PubMed  CAS  Google Scholar 

  28. Candido EP (2002) The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol 28:61–78

    Article  PubMed  CAS  Google Scholar 

  29. Lindblom TH, Dodd AK (2006) Xenobiotic detoxification in the nematode Caenorhabditis elegans. J Exp Zool A Comp Exp Biol 305:720–730

    PubMed  Google Scholar 

  30. Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:2227–2231

    Article  PubMed  CAS  Google Scholar 

  32. Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M (1999) Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 10:753–757

    Article  PubMed  CAS  Google Scholar 

  33. Hilliard MA, Bargmann CI, Bazzicalupo P (2002) C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 12:730–734

    Article  PubMed  CAS  Google Scholar 

  34. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72

    Article  PubMed  CAS  Google Scholar 

  35. Boyd WA, Cole RD, Anderson GL, Williams PL (2003) The effects of metals and food availability on the behavior of Caenorhabditis elegans. Environ Toxicol Chem 22:3049–3055

    Article  PubMed  CAS  Google Scholar 

  36. Xing X, Du M, Zhang Y, Wang D (2009) Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans. J Environ Sci (China) 21:1684–1694

    Article  CAS  Google Scholar 

  37. Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007) Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11:241–260

    Article  PubMed  CAS  Google Scholar 

  38. Xing X, Guo Y, Wang D (2009) Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts. Ecotoxicol Environ Saf 72:1819–1823

    Article  PubMed  CAS  Google Scholar 

  39. Ye H, Ye B, Wang D (2008) Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem 90:10–18

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Ye B, Wang D (2010) Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 59:129–136

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Wang Y (2008) Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny. Environ Pollut 151:585–592

    Article  PubMed  CAS  Google Scholar 

  42. Costa M, Sutherland JE, Peng W, Salnikow K, Broday L, Kluz T (2001) Molecular biology of nickel carcinogenesis. Mol Cell Biochem 222:205–211

    Article  PubMed  CAS  Google Scholar 

  43. Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68:2061–2069

    Article  PubMed  CAS  Google Scholar 

  44. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616

    Article  PubMed  CAS  Google Scholar 

  45. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  46. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Article  PubMed  CAS  Google Scholar 

  47. Horvitz HR, Sternberg PW, Greenwald IS, Fixsen W, Ellis HM (1983) Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):453–463

    Article  PubMed  Google Scholar 

  48. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    Article  PubMed  CAS  Google Scholar 

  49. Wang S, Tang M, Pei B, Xiao X, Wang J, Hang H, Wu L (2008) Cadmium-induced germline apoptosis in Caenorhabditis elegans: the roles of HUS1, p53, and MAPK signaling pathways. Toxicol Sci 102:345–351

    Article  PubMed  CAS  Google Scholar 

  50. Schrantz N, Bourgeade MF, Mouhamad S, Leca G, Sharma S, Vazquez A (2001) p38-mediated regulation of an Fas-associated death domain protein-independent pathway leading to caspase-8 activation during TGFbeta-induced apoptosis in human Burkitt lymphoma B cells BL41. Mol Biol Cell 12:3139–3151

    PubMed  CAS  Google Scholar 

  51. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23:1889–1899

    Article  PubMed  CAS  Google Scholar 

  52. Cai K, Ren C, Yu Z (2010) Nickel-induced apoptosis and relevant signal transduction pathways in Caenorhabditis elegans. Toxicol Ind Health 26:249–256

    Article  CAS  Google Scholar 

  53. Chong R, Ke-zhou C, Zeng-liang Y (2009) Induction of germline apoptosis by cobalt and relevant signal transduction pathways in Caenorhabditis elegans. Toxicol Mech Methods 19:541–546

    Article  PubMed  CAS  Google Scholar 

  54. Wang S, Wu L, Wang Y, Luo X, Lu Y (2009) Copper-induced germline apoptosis in Caenorhabditis elegans: the independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem Biol Interact 180:151–157

    Article  PubMed  CAS  Google Scholar 

  55. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr71

    Google Scholar 

  56. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20

    Article  PubMed  CAS  Google Scholar 

  57. Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511

    Article  PubMed  CAS  Google Scholar 

  58. Bolognin S, Messori L, Zatta P (2009) Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med 11:223–238

    Article  PubMed  CAS  Google Scholar 

  59. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F et al (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65:664–670

    Article  PubMed  CAS  Google Scholar 

  60. Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X, Daigle I, Markowitz M, O’Connor G, Plasterk R et al (2007) APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci USA 104:1971–1976

    Article  PubMed  CAS  Google Scholar 

  61. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92:9368–9372

    Article  PubMed  CAS  Google Scholar 

  62. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102–13113

    Article  PubMed  CAS  Google Scholar 

  63. Rebolledo DL, Aldunate R, Kohn R, Neira I, Minniti AN, Inestrosa NC (2011) Copper reduces A{beta} oligomeric species and ameliorates neuromuscular synaptic defects in a C. elegans model of inclusion body myositis. J Neurosci 31:10149–10158

    Article  PubMed  CAS  Google Scholar 

  64. Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309

    Article  PubMed  CAS  Google Scholar 

  65. Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30:22–33

    Article  PubMed  CAS  Google Scholar 

  66. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100:9980–9985

    Article  PubMed  CAS  Google Scholar 

  67. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  68. Zheng W, Xin N, Chi ZH, Zhao BL, Zhang J, Li JY, Wang ZY (2009) Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J 23:4207–4217

    Article  PubMed  CAS  Google Scholar 

  69. Faller P (2009) Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem 10:2837–2845

    Article  PubMed  CAS  Google Scholar 

  70. Hesse L, Beher D, Masters CL, Multhaup G (1994) The beta A4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116

    Article  PubMed  CAS  Google Scholar 

  71. Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    Article  PubMed  CAS  Google Scholar 

  72. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  PubMed  CAS  Google Scholar 

  73. White AR, Multhaup G, Galatis D, McKinstry WJ, Parker MW, Pipkorn R, Beyreuther K, Masters CL, Cappai R (2002) Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer’s disease amyloid precursor protein. J Neurosci 22:365–376

    PubMed  CAS  Google Scholar 

  74. Cerpa WF, Barria MI, Chacon MA, Suazo M, Gonzalez M, Opazo C, Bush AI, Inestrosa NC (2004) The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J 18:1701–1703

    PubMed  CAS  Google Scholar 

  75. Minniti AN, Rebolledo DL, Grez PM, Fadic R, Aldunate R, Volitakis I, Cherny RA, Opazo C, Masters C, Bush AI et al (2009) Intracellular amyloid formation in muscle cells of Abeta-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Mol Neurodegener 4:2

    Article  PubMed  CAS  Google Scholar 

  76. McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL, Barnham KJ, Cherny RA, Bush AI (2009) The Caenorhabditis elegans A beta 1-42 model of Alzheimer disease predominantly expresses A beta 3-42. J Biol Chem 284:22697–22702

    Article  PubMed  CAS  Google Scholar 

  77. Luo Y, Zhang J, Liu N, Zhao B (2011) Copper ions influence the toxicity of beta-amyloid(1-42) in a concentration-dependent manner in a Caenorhabditis elegans model of Alzheimer’s disease. Sci China Life Sci 54:527–534

    Article  PubMed  CAS  Google Scholar 

  78. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  PubMed  CAS  Google Scholar 

  79. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226

    Article  PubMed  CAS  Google Scholar 

  80. Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15:6975–6985

    PubMed  CAS  Google Scholar 

  81. Mata IF, Lockhart PJ, Farrer MJ (2004) Parkin genetics: one model for Parkinson’s disease. Hum Mol Genet 13 Spec No 1:R127–R133

    Article  PubMed  CAS  Google Scholar 

  82. Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Hoener M, Rodrigues CM, Alfonso A, Steer C et al (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280:42655–42668

    Article  PubMed  CAS  Google Scholar 

  83. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281:334–340

    Article  PubMed  CAS  Google Scholar 

  84. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172

    Article  PubMed  CAS  Google Scholar 

  85. Wang YM, Pu P, Le WD (2007) ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci Bull 23:329–335

    Article  PubMed  CAS  Google Scholar 

  86. Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284:16482–16491

    Article  PubMed  CAS  Google Scholar 

  87. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  PubMed  CAS  Google Scholar 

  88. Graumann R, Paris I, Martinez-Alvarado P, Rumanque P, Perez-Pastene C, Cardenas SP, Marin P, Diaz-Grez F, Caviedes R, Caviedes P et al (2002) Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol J Pharmacol 54:573–579

    PubMed  CAS  Google Scholar 

  89. Au C, Benedetto A, Anderson J, Labrousse A, Erikson K, Ewbank JJ, Aschner M (2009) SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PLoS One 4:e7792

    Article  PubMed  CAS  Google Scholar 

  90. Settivari R, Levora J, Nass R (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem 284:35758–35768

    Article  PubMed  CAS  Google Scholar 

  91. Aschner M, Syversen T (2005) Methylmercury: recent advances in the understanding of its neurotoxicity. Ther Drug Monit 27:278–283

    Article  PubMed  Google Scholar 

  92. Biernat H, Ellias SA, Wermuth L, Cleary D, de Oliveira Santos EC, Jorgensen PJ, Feldman RG, Grandjean P (1999) Tremor frequency patterns in mercury vapor exposure, compared with early Parkinson’s disease and essential tremor. Neurotoxicology 20:945–952

    PubMed  CAS  Google Scholar 

  93. Kaur P, Aschner M, Syversen T (2007) Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology 230:164–177

    Article  PubMed  CAS  Google Scholar 

  94. Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury: present and future concerns. Environ Health Perspect 96:159–166

    Article  PubMed  CAS  Google Scholar 

  95. Fabrizio E, Vanacore N, Valente M, Rubino A, Meco G (2007) High prevalence of extrapyramidal signs and symptoms in a group of Italian dental technicians. BMC Neurol 7:24

    Article  PubMed  Google Scholar 

  96. Kirkey KL, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Gorell JM (2001) Occupational categories at risk for Parkinson’s disease. Am J Ind Med 39:564–571

    Article  PubMed  CAS  Google Scholar 

  97. Petersen MS, Halling J, Bech S, Wermuth L, Weihe P, Nielsen F, Jorgensen PJ, Budtz-Jorgensen E, Grandjean P (2008) Impact of dietary exposure to food contaminants on the risk of Parkinson’s disease. Neurotoxicology 29:584–590

    Article  PubMed  CAS  Google Scholar 

  98. Petersen MS, Weihe P, Choi A, Grandjean P (2008) Increased prenatal exposure to methylmercury does not affect the risk of Parkinson’s disease. Neurotoxicology 29:591–595

    Article  PubMed  CAS  Google Scholar 

  99. Gellein K, Syversen T, Steinnes E, Nilsen TI, Dahl OP, Mitrovic S, Duraj D, Flaten TP (2008) Trace elements in serum from patients with Parkinson’s disease–a prospective case-control study: the Nord-Trondelag Health Study (HUNT). Brain Res 1219:111–115

    Article  PubMed  CAS  Google Scholar 

  100. Helmcke KJ, Aschner M (2010) Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248:156–164

    Article  PubMed  CAS  Google Scholar 

  101. Helmcke KJ, Syversen T, Miller DM 3rd, Aschner M (2009) Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 240:265–272

    Article  PubMed  CAS  Google Scholar 

  102. Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116:590–603

    Article  PubMed  CAS  Google Scholar 

  103. Vanduyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118:613–624

    Article  PubMed  CAS  Google Scholar 

  104. Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B (2011) beta-Amyloid peptide increases iron content and oxidative stress in human all and Caenorhabditis elegans models of Alzheimer’s disease. Free Radic. Biol. Med. 50, 122–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for support by NIEHS R01ES07331, R01ES10563, the Center in Molecular Toxicology NIH grant P30ES00267, and the training program in Environmental Toxicology grant T32ES007028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Caito, S., Aschner, M. (2012). Heavy metals, behavior, and neurodegeneration: using Caenorhabditis elegans to untangle a can of worms. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_15

Download citation

Publish with us

Policies and ethics